• Title/Summary/Keyword: Interpolated data

Search Result 198, Processing Time 0.022 seconds

Analysis of Precision of Interpolation of Reservoir bed Through Comparison of Data Acquired by Using UAV and Echo Sounder (UAV와 Echo Sounder 취득 자료의 비교를 통한 저수지 하상의 공간 보간별 정확도 분석)

  • Roh, Tae-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.85-99
    • /
    • 2020
  • Reservoir is an important infrastructure of our society because it can store immense amount of water for various usages - manufacturing, agriculture, drinking, power generation, tourism etc. For maintenance of reservoir, various efforts in administrative and technological aspects are periodically conducted and monitoring the conditions of reservoir bed is the first priority for maintenance of reservoir. To check the conditions of reservoir bed, we measured depth of reservoir by using echo sounder, which is relatively reliable, prior to discharging of stored water and surveyed topography of reservoir by using UAV after discharging of water. Then, we conducted interpolation of measured depth of water by means of inverse distance weighting interpolation, Kriging interpolation, minimum curvature interpolation and radial basis function interpolation and calculated the volume of reservoir for each interpolation method. We compared the calculated volume of reservoir with the volume of water calculated by UAV after discharging of water and found the following results: First, as results of the above processes, we found that the Kriging interpolation was 97% correct in measurement of the volume of reservoir. Second, as results of comparison of differences between topographical areas and interpolated areas after selection of cross section for comparison, Kriging interpolation was found to have the most similar configuration with the topographical configuration by showing the least difference in the area of cross section. Therefore, it is determined that the optimal modeling of reservoir bed with the water depth data measured by echo sounder shall provide basic information for efficient maintenance of reservoir.

Estimation of the Spatial Distribution of Groundwater Recharge by Grid-based Soil Water Balance Method (격자기반의 토양물수지방법에 의한 지하수함양의 공간분포 추정)

  • An Jung-Gi;Lee Yong-Doo;Hwang Jong-Hwan
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.1
    • /
    • pp.65-76
    • /
    • 2006
  • This paper outlines the methodology of grid-based water balance for estimating the spatial distribution of recharge, which is applied to Woedo catchment in the northern area of the Jeju Island. The catchment is divided into grids and a daily water balance in each grid is computed for the period of 5 years. Daily rainfall data in each grid is interpolated from the data of 10 rainfall gauging stations. The spatial distributions of parameters such as SCS curve number, soil water retention capacity and crop coefficients are derived from GIS analyses of soil and land use characteristics. The SCS curve number is obtained by calibrating simulated runoffs with respect to the observed runoffs. The results show that the average annual rainfall increases from 1,665 mm/year to 3,382 mm/year in accordance with the topographic elevation, and the average annual recharge varies from 372 mm/year to 2,576 mm/year according to the average annual rainfall increases. Spatial variability of recharge is the highest among the water balance components such as rainfall, direct runoff, evaprotranspiration and recharge because the rate of runoff and evapotranspiration in the area with relatively low rainfall is higher than the other area.

Development of Device Measuring Real-time Air Flow in Greenhouse (온실 공기유동 계측 시스템 개발)

  • Noh, Jae Seung;Kwon, Jinkyoung;Kim, Yu Yong
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.20-26
    • /
    • 2018
  • This study was conducted to develop a device for measuring the air flow by space variation through monitoring program, which acquires data by each point from each environmental sensor located in the greenhouse. The distribution of environmental factors(air temperature, humidity, wind speed, etc.) in the greenhouse is arranged at 12 points according to the spatial variation and a large number of measurement points (36 points in total) on the X, Y and Z axes were selected. Considering data loss and various greenhouse conditions, a bit rate was at 125kbit/s at low speed, so that the number of sensors can be expanded to 90 within greenhouse with dimensions of 100m by 100m. Those system programmed using MATLAB and LabVIEW was conducted to measure distributions of the air flow along the greenhouse in real time. It was also visualized interpolated the spatial distribution in the greenhouse. In order to verify the accuracy of CFD modeling and to improve the accuracy, it will compare the environmental variation such as air temperature, humidity, wind speed and $CO_2$ concentration in the greenhouse.

Estimation of Climatological Precipitation of North Korea by Using a Spatial Interpolation Scheme (지형기후학적 공간내삽에 의한 북한지역 강수기후도 작성)

  • Yun Jin-Il
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.1
    • /
    • pp.16-23
    • /
    • 2000
  • A topography-precipitation relationship derived from the southern part of Korean Peninsula was applied to North Korea where climate stations are few and widely separated. Two hundred and seventy seven rain gauge stations of South Korea were classified into 8 different groups depending on the slope orientation (aspect) of the region they are located. Monthly precipitation averaged over 10 year period (1986-1995) was regressed to topographical variables of the station locations. A 'trend precipitation' for each gauge station was extracted from the precipitation surface interpolated from the monthly precipitation data of 24 standard stations of the Korea Meteorological Administration and used as a substitute for y-axis intercept of the regression equation. These regression models were applied to the corresponding regions of North Korea, which were identified by slope orientation, to obtain monthly precipitation surface for the aspect regions. 'Trend precipitation' from the 10 year data of 27 North Korean standard stations was also used in the model calculation. Output grids for each aspect region were mosaicked to form the monthly and annual precipitation surface with a 1km$\times$1km resolution for the entire territory of North Korea. Spatially averaged annual precipitation of North Korea was 938 mm with the standard deviation of 246 mm.

  • PDF

Geographical Shift in Blooming Date of Kiwifruits in Jeju Island by Global Warming (지구온난화에 따른 제주도 내 참다래 개화일의 지리적 이동)

  • Kwon, Young-Soon;Kim, Soo-Ock;Seo, Hyeong-Ho;Moon, Kyung-Hwan;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.179-188
    • /
    • 2012
  • A kiwifruit cultivar 'Hayward' has been grown in Jeju Island where the current climate is suitable for growth and development of this crop. Prediction of the geographical shift in the phenology can help the kiwifruits growers to adapt to the local climate change in the future. Two phenology models (i.e., chill-day and DVS) were parameterized to estimate flowering date of kiwifruits 'Hayward' based on the data collected from field plots and chamber experiments in the southern coastal and island locations in South Korea. Spatio-temporally independent datasets were used to evaluate performance of the two models in predicting flowering date of 'Hayward'. Chill-day model showed better performance than DVS model (2.5 vs. 4.0 days in RMSE). Daily temperature data interpolated at a higher spatial resolution over Jeju Island were used to predict flowering dates of 'Hayward' in 2021-2100 under the A1B scenario. According to the model calculation under the future climate condition, the flowering of kiwifruits shall accelerate and the area with poor flowering might increase due to the warmer winter induced insufficient chilling. Optimal land area for growing 'Hayward' could increase for a while in the near future (2021-2030), whereas such areas could decrease to one half of the current areas by 2100. The geographic locations suitable for 'Hayward' cultivation would migrate from the current coastal area to the elevated mountain area by 250 m.

The Relationship between Stand Mean DBH and Temperature at a Watershed Scale: The Case of Andong-dam Basin (유역단위에서의 임목평균흉고직경과 기온 간의 관계: 안동댐 유역을 중심으로)

  • Moon, Jooyeon;Kim, Moonil;Lim, Yoonjin;Piao, Dongfan;Lim, Chul-Hee;Kim, Seajin;Song, Cholho;Lee, Woo-Kyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.287-297
    • /
    • 2016
  • This study aims to identify the relationship between climatic factors and stand mean Diameter at Breast Height (DBH) for two major tree species; Pinus densiflora and Quercus mongolica in Andong-dam basin. Forest variables such as age, diameter distribution and number of trees per hectare from the $5^{th}$ and $6^{th}$ National Forest Inventory data were used to develop a DBH estimation model. Climate data were collected from six meteorological observatory station and twelve Automatic Weather System provided by Korea Meteorological Administration to produce interpolated daily average temperature map with Inverse Distance Weighting (IDW) method. Andong-dam basin reflects rugged mountainous terrain, so temperature were adjusted by lapse rate based correction. As a result, predictions of model were consistent with the previous studies; that the rising temperature is negatively related to the growth of Pinus densiflora whereas opposing trend is observed for Quercus mongolica.

Study of Groundwater Recharge Rate Change by Using Groundwater Level and GRACE Data in Korea (지하수위와 GRACE 자료를 이용한 국내 지하수 함양량 변화 연구)

  • Jeon, Hang-Tak;Hamm, Se-Yeong;Jo, Young-Heon;Kim, Jinsoo;Park, Soyoung;Cheong, Jae-Yeol
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.265-277
    • /
    • 2019
  • Changes in the amount, intensity, frequency, and type of precipitation, in conjunction with global warming and climate change, critically impact groundwater recharge and associated groundwater level fluctuations. Monthly gravity levels by the Gravity Recovery and Climate Experiment (GRACE) are acquired to monitor total water storage changes at regional and global scales. However, there are inherent difficulties in quantitatively relating the GRACE observations to groundwater level data due to the difficulties in spatially representing groundwater levels. Here three local interpolation methods (kriging, inverse distance weighted, and natural neighbor) were implemented to estimate the areal distribution of groundwater recharge changes in South Korea during the 2002-2016 period. The interpolated monthly groundwater recharge changes are compared with the GRACE-derived groundwater storage changes. There is a weak decrease in the groundwater recharge changes over time in both the GRACE observations and groundwater measurements, with the rate of groundwater recharge change exhibiting mean and median values of -0.01 and -0.02 cm/month, respectively.

Evaluation of Site-specific Potential for Rice Production in Korea under the Changing Climate (지구온난화에 따른 우리나라 벼농사지대의 생산성 재평가)

  • Chung, U-Ran;Cho, Kyung-Sook;Lee, Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.229-241
    • /
    • 2006
  • Global air temperature has risen by $0.6^{\circ}C$ over the last one hundred years due to increased atmospheric greenhouse gases. Moreover, this global warming trend is projected to continue in the future. This study was carried out to evaluate spatial variations in rice production areas by simulating rice-growth and development with projected high resolution climate data in Korea far 2011-2100, which was geospatially interpolated from the 25 km gridded data based on the IPCC SRES A2 emission scenario. Satellite remote sensing data were used to pinpoint the rice-growing areas, and corresponding climate data were aggregated to represent the official 'crop reporting county'. For the simulation experiment, we used a CERES-Rice model modified by introducing two equations to calculate the leaf appearance rate based on the effective temperature and existing leaf number and the final number of leaves based on day-length in the photoperiod sensitive phase of rice. We tested the performance of this model using data-sets obtained from transplanting dates and nitrogen fertilization rates experiments over three years (2002 to 2004). The simulation results showed a good performance of this model in heading date prediction [$R^2$=0.9586 for early (Odaebyeo), $R^2$=0.9681 for medium (Hwasungbyeo), and $R^2$=0.9477 for late (Dongjinbyeo) maturity cultivars]. A modified version of CERES-Rice was used to simulate the growth and development of three Japonica varieties, representing early, medium, and late maturity classes, to project crop status for climatological normal years between 2011 and 2100. In order to compare the temporal changes, three sets of data representing 3 climatological years (2011-2040, 2041-2070, and 2071-2100) were successively used to run the model. Simulated growth and yield data of the three Japonica cultivars under the observed climate for 1971-2000 was set as a reference. Compared with the current normal, heading date was accelerated by 7 days for 2011-2040 and 20 days for 2071-2100. Physiological maturity was accelerated by 15 days for 2011-2040 and 30 days for 2071-2100. Rice yield was in general reduced by 6-25%, 3-26%, and 3-25% per 10a in early, medium, and late maturity classes, respectively. However, mid to late maturing varieties showed an increased yield in northern Gyeonggi Province and in most of Kwangwon Province in 2071-2100.

Multi-view Video Coding using View Interpolation (영상 보간을 이용한 다시점 비디오 부호화 방법)

  • Lee, Cheon;Oh, Kwan-Jung;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.12 no.2
    • /
    • pp.128-136
    • /
    • 2007
  • Since the multi-view video is a set of video sequences captured by multiple array cameras for the same three-dimensional scene, it can provide multiple viewpoint images using geometrical manipulation and intermediate view generation. Although multi-view video allows us to experience more realistic feeling with a wide range of images, the amount of data to be processed increases in proportion to the number of cameras. Therefore, we need to develop efficient coding methods. One of the possible approaches to multi-view video coding is to generate an intermediate image using view interpolation method and to use the interpolated image as an additional reference frame. The previous view interpolation method for multi-view video coding employs fixed size block matching over the pre-determined disparity search range. However, if the disparity search range is not proper, disparity error may occur. In this paper, we propose an efficient view interpolation method using initial disparity estimation, variable block-based estimation, and pixel-level estimation using adjusted search ranges. In addition, we propose a multi-view video coding method based on H.264/AVC to exploit the intermediate image. Intermediate images have been improved about $1{\sim}4dB$ using the proposed method compared to the previous view interpolation method, and the coding efficiency have been improved about 0.5 dB compared to the reference model.

Development and validation of poisson cluster stochastic rainfall generation web application across South Korea (포아송 클러스터 가상강우생성 웹 어플리케이션 개발 및 검증 - 우리나라에 대해서)

  • Han, Jaemoon;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.335-346
    • /
    • 2016
  • This study produced the parameter maps of the Modified Bartlett-Lewis Rectangular Pulse (MBLRP) stochastic rainfall generation model across South Korea and developed and validated the web application that automates the process of rainfall generation based on the produced parameter maps. To achieve this purpose, three deferent sets of parameters of the MBLRP model were estimated at 62 ground gage locations in South Korea depending on the distinct purpose of the synthetic rainfall time series to be used in hydrologic modeling (i.e. flood modeling, runoff modeling, and general purpose). The estimated parameters were spatially interpolated using the Ordinary Kriging method to produce the parameter maps across South Korea. Then, a web application has been developed to automate the process of synthetic rainfall generation based on the parameter maps. For validation, the synthetic rainfall time series has been created using the web application and then various rainfall statistics including mean, variance, autocorrelation, probability of zero rainfall, extreme rainfall, extreme flood, and runoff depth were calculated, then these values were compared to the ones based on the observed rainfall time series. The mean, variance, autocorrelation, and probability of zero rainfall of the synthetic rainfall were similar to the ones of the observed rainfall while the extreme rainfall and extreme flood value were smaller than the ones derived from the observed rainfall by the degree of 16%-40%. Lastly, the web application developed in this study automates the entire process of synthetic rainfall generation, so we expect the application to be used in a variety of hydrologic analysis needing rainfall data.