• Title/Summary/Keyword: Interpolated Frame

Search Result 43, Processing Time 0.02 seconds

Frame Rate Up Conversion by the Variance of Motion Vectors (모션 벡터들의 분산값을 이용한 프레임률 상향 변환)

  • Yang, Soon Mo;Kim, kyuheon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.309-312
    • /
    • 2019
  • 본 논문에서는 계산의 복잡성을 줄이고 피크 신호 대 잡음 비율(PSNR) 성능을 개선하기 위한 새로운 프레임 상향 변환 (Frame Rate Up Conversion) 알고리즘을 제안한다. 제안된 알고리즘을 사용하기 위한 모션 추정 과정(Motion Estimation) 은 이전 프레임과 현재 프레임에서 마크로블록(Macroblock) 값의 최소 차이값(Sum of absolute differences) 을 이용하여 보간된 프레임(Interpolated Frame) 의 마크로블록이 가지게 되는 모션 벡터 값을 추출한다. 이 때 반복된 배경 패턴 및 여러 움직임들 때문에 모션 추정 과정에서 출력되는 벡터값이 비정상적으로 출력되는 경우가 있다. 여기서 제안된 알고리즘을 통해 모션 벡터값들의 특이치(Outlier) 를 검출하고 이를 교정하기 위한 분산값(Variance) 을 이용하여 모션 벡터 평활화 작업(Motion Vector Smoothing) 을 거친다. 이와 같이 제안된 알고리즘을 이용하여 실험한 결과값으로 프레임률 상향 변환 과정을 통해 상대적으로 계산의 복잡성은 낮으면서 양호한 PSNR 값이 출력됨을 확인할 수 있다.

  • PDF

An Adaptive Occluded Region Detection and Interpolation for Robust Frame Rate Up-Conversion

  • Kim, Jin-Soo;Kim, Jae-Gon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.201-206
    • /
    • 2011
  • FRUC (Frame Rate Up-Conversion) technique needs an effective frame interpolation algorithm using motion information between adjacent neighboring frames. In order to have good visual qualities in the interpolated frames, it is necessary to develop an effective detection and interpolation algorithms for occluded regions. For this aim, this paper proposes an effective occluded region detection algorithm through the adaptive forward and backward motion searches and also by introducing the minimum value of normalized cross-correlation coefficient (NCCC). That is, the proposed scheme looks for the location with the minimum sum of absolute differences (SAD) and this value is compared to that of the location with the maximum value of NCCC based on the statistics of those relations. And, these results are compared with the size of motion vector and then the proposed algorithm decides whether the given block is the occluded region or not. Furthermore, once the occluded regions are classified, then this paper proposes an adaptive interpolation algorithm for occluded regions, which still exist in the merged frame, by using the neighboring pixel information and the available data in the occluded block. Computer simulations show that the proposed algorithm can effectively classify the occluded region, compared to the conventional SAD-based method and the performance of the proposed interpolation algorithm has better PSNR than the conventional algorithms.

Improving LD-CELP using frame classification and modified synthesis filter (프레임 분류와 합성필터의 변형을 이용한 적은 지연을 갖는 음성 부호화기의 성능)

  • 임은희;이주호;김형명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.6
    • /
    • pp.1430-1437
    • /
    • 1996
  • A low delay code excited linear predictive speech coder(LD-CELP) at bit rates under 8kbps is considered. We try to improve the perfomance of speech coder with frame type dependent modification of synthesis filter. We first classify frames into 3 groups: voiced, unvoiced and onset. For voicedand unvoiced frame, the spectral envelope of the synthesis filter is adapted to the phonetic characteristics. For transition frame from unvoiced to voiced, the synthesis filter which has been interpolated with the bias filter is used. The proposed vocoder produced more clear sound with similar delay level than other pre-existing LD-CELP vocoders.

  • PDF

Time-Domain Quantization and Interpolation of Pitch Cycle Waveform

  • Kim, Moo-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1E
    • /
    • pp.11-16
    • /
    • 2008
  • In this paper, a pitch cycle waveform (PCW) is extracted, quantized, and interpolated in a time domain to synthesize high-quality speech at low bit rates. The pre-alignment technique is proposed for the accurate and efficient PCW extraction, which predicts the current PCW position from the previous PCW position assuming that pitch periods evolve slowly. Since the pitch periods are different frame by frame, the original PCW is converted into the fixed-dimension PCW using the dimension-conversion method, and subsequently quantized by code-excited linear predictive (CELP) coding. The excitation signal for the linear predictive coding (LPC) synthesis filter is generated using the time-domain interpolation and interlink of the quantized PCW's. The coder operates at 4.2 kbit/s and 3.2 kbit/s depending on the pitch period. Informal listening test demonstrates the effectiveness of the proposed coding scheme.

Temporally adaptive layered image sequence coding technique employing H.261 for ATM networks (ATM 전송망에서 H.261을 이용한 시간 적응 계측 부호화 기법)

  • 김용관;김인철;이상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.7
    • /
    • pp.1505-1514
    • /
    • 1997
  • In this paper, a temporally adaptive layered image sequence coding technique employing H.261 is proposed. In the proposed technique, the frame rate of the base layer is adjusted according to the temporal activity measure based on the rate-distortion function. The base layer is encoded using the H.261. Then, the full frame-rate error image is formed by comparing the original image and the interpolated version of the reconstructed base layer image. The enhancement layer is algo encoded using H.261 but with leaky prdiction to provide robust error resilience. The simulation results show that the proposed technique provides better performance than the twin-H.261 with leaky prediction in both the fixed-rate and variable-rate systems.

  • PDF

Temporal interpolator based on spatial filtering (공간 필터링에 근거한 시간축 내삽기)

  • 김종훈
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.8
    • /
    • pp.60-67
    • /
    • 1996
  • In this paper, we propose a new temporal interpolation method based on spatial filtering. Compared with the conventional method, the proposed one may use a few adjacent frames and apply temporal lowpass filtering. To develop this method, we follow the basic approach of sampling rate conversion. Additionally, we use some assumption of video sequence : moving object has constant velocity rigid translational motion. From them, spatial filtering for temporal sampling rate conversion is described. This method has a lot of noise immunity on a motion vector and doesn't make a great difference from the original frame. The interpolated frame shows moderate change even there is a great time difference. This method has exactly same description of motion adaptive spatial filter which has an efficient temporal band-limiting characteristics. It imposes the possibility to make video sequence with good pictural quality.

  • PDF

A Data Structure for Real-time Volume Ray Casting (실시간 볼륨 광선 투사법을 위한 자료구조)

  • Lim, Suk-Hyun;Shin, Byeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.11 no.1
    • /
    • pp.40-49
    • /
    • 2005
  • Several optimization techniques have been proposed for volume ray casting, but these cannot achieve real-time frame rates. In addition, it is difficult to apply them to some applications that require perspective projection. Recently, hardware-based methods using 3D texture mapping are being used for real-time volume rendering. Although rendering speed approaches real time, the larger volumes require more swapping of volume bricks for the limited texture memory. Also, image quality deteriorates compared with that of conventional volume ray casting. In this paper, we propose a data structure for real-time volume ray casting named PERM (Precomputed dEnsity and gRadient Map). The PERM stores interpolated density and gradient vector for quantized cells. Since the information requiring time-consuming computations is stored in the PERM, our method can ensure interactive frame rates on a consumer PC platform. Our method normally produces high-quality images because it is based on conventional volume ray casting.

  • PDF

Closed-form optimum tuning formulas for passive Tuned Mass Dampers under benchmark excitations

  • Salvi, Jonathan;Rizzi, Egidio
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.231-256
    • /
    • 2016
  • This study concerns the derivation of optimum tuning formulas for a passive Tuned Mass Damper (TMD) device, for the case of benchmark ideal excitations acting on a single-degree-of-freedom (SDOF) damped primary structure. The free TMD parameters are tuned first through a non-linear gradient-based optimisation algorithm, for the case of harmonic or white noise excitations, acting either as force on the SDOF primary structure or as base acceleration. The achieved optimum TMD parameters are successively interpolated according to appropriate analytical fitting proposals, by non-linear least squares, in order to produce simple and effective TMD tuning formulas. In particular, two fitting models are presented. The main proposal is composed of a simple polynomial relationship, refined within the fitting process, and constitutes the optimum choice. A second model refers to proper modifications of literature formulas for the case of an undamped primary structure. The results in terms of final (interpolated) optimum TMD parameters and of device effectiveness in reducing the structural dynamic response are finally displayed and discussed in detail, showing the wide and ready-to-use validity of the proposed optimisation procedure and achieved tuning formulas. Several post-tuning trials have been carried out as well on SDOF and MDOF shear-type frame buildings, by confirming the effective benefit provided by the proposed optimum TMD.

Distortion Estimation Using Block-Adaptive Matching Characteristics for Motion Compensated Interpolation Frame (움직임 보상 보간 프레임에 대한 블록 적응적 정합 특성을 이용한 왜곡 예측 기법)

  • Kim, Jin-Soo;Kim, Jae-Gon;Seo, Kwang-Deok
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.1058-1068
    • /
    • 2011
  • Video FRUC (Frame Rate Up Conversion) is one of the main issues that have arisen in recent years with the explosive growth of video sources and display formats in consumer electronics. Most advanced FRUC algorithms adopt an efficient motion interpolation technique to determine the motion vector field of interpolated frames. But, in some application areas such as post processing in receiver side, it is necessary to evaluate how well the MCI (Motion Compensated Interpolation) frame was reconstructed. In order to achieve this aim, first, this paper introduces some cost functions to estimate the reliability of a block in the MCI frame. Then, by using these functions, this paper proposes two distortion estimation models for evaluating how much noise was produced in the MCI frame. Through computer simulations, it is shown that the proposed estimation methods perform effectively in estimating the noises of the MCI frame.

Frame Interpolation using Dominant MV (우세 움직임 벡터를 이용한 프레임 보간 기법)

  • Choi, Seung-Hyun;Lee, Seong-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.123-131
    • /
    • 2009
  • The emerging display technology has been replaced the previous position of the CRT with the LCD. The nature of hold type display such as LCD, however, causes many problems such as motion blur and motion judder. To resolve the problems, we used frame interpolation technique which improves the image quality by inserting new interpolated frames between existing frames. In this paper, we propose a novel frame interpolation technique that uses dominant MV and variance different value in each block. At first, the proposed algorithm performs unidirectional motion estimation using blocking matching algorithm. The new frame is generated by pixel average using compared block variance or by pixel motion compensation using dominant motion vector, whether the motion estimation find the target area or not. Several experiments with the proposed algorithm shows that the proposed algorithm has better image quality than the existing bidirectional frame interpolation algorithm at the rate of about 3dB PSNR and has low complexity comparing to the unidirectional frame interpolation technique.