• Title/Summary/Keyword: Interphotoreceptor retinoid-binding protein

Search Result 3, Processing Time 0.017 seconds

Blood-retina barrier dysfunction in experimental autoimmune uveitis: the pathogenesis and therapeutic targets

  • Jeongtae Kim;Jiyoon Chun;Meejung Ahn;Kyungsook Jung;Changjong Moon;Taekyun Shin
    • Anatomy and Cell Biology
    • /
    • v.55 no.1
    • /
    • pp.20-27
    • /
    • 2022
  • Experimental autoimmune uveitis (EAU), an animal model of human uveitis, is characterized by infiltration of autoimmune T cells in the uvea as well as in the retina of susceptible animals. EAU is induced by the immunization of uveitogenic antigens, including either retinal soluble-antigen or interphotoreceptor retinoid-binding proteins, in Lewis rats. The pathogenesis of EAU in rats involves the proliferation of autoimmune T cells in peripheral lymphoid tissues and breakdown of the blood-retinal barrier, primarily in the uvea and retina, finally inducing visual dysfunction. In this review, we describe recent EAU studies to facilitate the design of a therapeutic strategy through the interruption of uveitogenic factors during the course of EAU, which will be helpful for controlling human uveitis.

Maturation-Resistant Dendritic Cells Ameliorate Experimental Autoimmune Uveoretinitis

  • Oh, Keun-Hee;Kim, Yon-Su;Lee, Dong-Sup
    • IMMUNE NETWORK
    • /
    • v.11 no.6
    • /
    • pp.399-405
    • /
    • 2011
  • Background: Endogenous uveitis is a chronic inflammatory eye disease of human, which frequently leads to blindness. Experimental autoimmune uveoretinitis (EAU) is an animal disease model of human endogenous uveitis and can be induced in susceptible animals by immunization with retinal antigens. EAU resembles the key immunological characteristics of human disease in that both are $CD4^+$ T-cell mediated diseases. Dendritic cells (DCs) are specialized antigen-presenting cells that are uniquely capable of activating naive T cells. Regulation of immune responses through modulation of DCs has thus been tried extensively. Recently our group reported that donor strain-derived immature DC pretreatment successfully controlled the adverse immune response during allogeneic transplantation. Methods: EAU was induced by immunization with human interphotoreceptor retinoid-binding protein (IRBP) $peptide_{1-20}$. Dendritic cells were differentiated from bone marrow in the presence of recombinant GM-CSF. Results: In this study, we used paraformaldehyde-fixed bone marrow-derived DCs to maintain them in an immature state. Pretreatment with fixed immature DCs, but not fixed mature DCs, ameliorated the disease progression of EAU by inhibiting uveitogenic $CD4^+$ T cell activation and differentiation. Conclusion: Application of iBMDC prepared according to the protocol of this study would provide an important treatment modality for the autoimmune diseases and transplantation rejection.

Nitric oxide-induced immune switching in experimental inflammatory autoimmune diseases

  • Kwak, Hyun-Jeong;Kim, Hyung-Jin;Park, Jae-Sung;Jun, Chang-Duk;Lee, Mun-Young;Shin, Tae-Kyun;Chung, Hun-Taeg
    • IMMUNE NETWORK
    • /
    • v.1 no.2
    • /
    • pp.116-125
    • /
    • 2001
  • Background: Nitric oxide (NO) production has been described as a double-edged sword eliciting both pro- and anti-inflammatory effects in different immune reactions. This work was undertaken to investigate the immunoregulatory role of NO in experimental allergic encephalomyelitis (EAE) and experimental allergic uveitis (EAU). Method: We examined whether molsidomine (MSDM), a NO donor, administration to the myelin basic protein (MBP)- or interphotoreceptor retinoid binding protein (IRBP)-immunized rats could suppress EAE development by shifting toward the Th2 cytokine response. In the EAE experiments, the rats were treated orally with MSDM (10 mg/kg/day) at the early stage (-1~4 days) or throughout the experimental period (-1~15 days). Results: This resulted in significant amelioration of the disease and mild clinical symptoms, while MBP-immunization without MSDM administration showed severe EAE development. A marked reduction in inflammation was also observed in the spinal cord, indicating the crucial role of NO in the pathogenesis of EAE in in vivo. In the EAU experiments, a 24 h pre-treatment with MSDM prior to IRBP immunization resulted in significant inhibition of the disease. Furthermore, MSDM administration for 2 1 days completely reduced the incidence and severity of EAU. To investigate whether MSDM could modulate cytokine switching from Th 1 to Th2, culture supernatants of MBP- or IRBP-stimulated inguinal lymphocytes were analyzed. MSDM treatment enhanced IL-10 secretion but decreased IFN-${\gamma}$. IL-4 was undetectable in all groups. In contrast, the MBP-or IRBP-immunized rats without MSDM secreted high concentrations of IFN-${\gamma}$, but low concentrations of IL-10. Conclusion: In conclusion, NO administation suppresses EAE and EAU by modulating the Th1/Th2 balance during inflammatory immune responses. This work further suggests that NO may be useful in the therapeutic control of autoimmune disease.

  • PDF