• Title/Summary/Keyword: Interoperability Model

Search Result 461, Processing Time 0.025 seconds

Integration Mechanism of SDL and CORBA System using Method/Signal Mapping Rules (메소드/시그널 매핑을 이용한 SDL과 CORBA 시스템의 통합 방법)

  • Paik, Eui-Hyun;Huh, Jae-Doo;Lee, Hyeong-Ho
    • The KIPS Transactions:PartA
    • /
    • v.9A no.4
    • /
    • pp.479-484
    • /
    • 2002
  • This paper presents the model that integrates an SDL system and a CORBA system using mapping rules between method and signal for developing embedded systems connected with internet. In order to support communication between the two different systems (SDL and CORBA), it is essential to secure the conversion interface between SDL communication protocol and CORBA communication protocol. In this paper, IDL is adopted for the communication interface and the conversion of the communication protocol between the two systems, and the IDL compiler automatically generates the interface for protocol interoperability. The proposed model adopts middleware on the subpart of the SDL based legacy system, and hence, supports the service on the distributed system, regardless of the environment and location of the server system.

A Prototype of Three Dimensional Operations for GIS

  • Chi, Jeong-Hee;Lee, Jin-Yul;Kim, Dae-Jung;Ryu, Keun-Ho;Kim, Kyong-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.880-884
    • /
    • 2002
  • According to the development of computer technology, especially in 3D graphics and visualization, the interest for 3D GIS has been increasing. Several commercial GIS softwares are ready to provide 3D function in their traditional 2D GIS. However, most of these systems are focused on visualization of 3D objects and supports few analysis functions. Therefore in this paper, we design not only a spatial operation processor which can support spatial analysis functions as well as 3D visualization, but also implement a prototype to operate them. In order to support interoperability between the existing models, the proposed spatial operation processor supports the 3D spatial operations based on 3D geometry object model which is designed to extend 2D geometry model of OGIS consortium, and supports index based on R$^*$-Tree. The proposed spatial operation processor can be applied in 3D GIS to support 3D analysis functions.

  • PDF

Development of a Design Information Sharing System Using Network and STEP (네트워크와 STEP 표준을 이용한 설계 정보 공유 시스템의 개발)

  • Cho, Sung-Wook;Choi, Young;Kwon, Ki-Eok;Park, Myung-Jin;Yang, Sang-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.82-92
    • /
    • 1998
  • An international standard for the product model data, STEP, and a standard for the distributed object technology, CORBA, will play a very important role in the future manufacturing environment. These two technologies provide background for the sharing of product data and the integration of applications on the network. This paper describes a prototype CAD/CAE environment that is integrated on the network by STEP and CORBA. Several application servers and client software were developed to verify the proposed concept. The present CAD/CAE environments are composed of several individual software components which are not tightly integrated. They also do not utilize the rapidly expanding network and object technologies for the collaboration in the product design process. In the design process in a large organization, sharing of application resources, design data and analysis data through the network will greatly enhance the productivity. The integration between applications can be supported by two key technologies, CORBA(Common Object Request Broker Architecture) and STEP(Standard for the Exchange of Product Model Bata). The CORBA provides interoperability between applications on different machines in heterogeneous distributed environments and seamlessly interconnects distributed object systems. Moreover, if all the data in the CAD/CAE environment are based on the STEP, then we can exclude all the data conversion problems between the application systems.

  • PDF

Model Transformation and Inference of Machine Learning using Open Neural Network Format (오픈신경망 포맷을 이용한 기계학습 모델 변환 및 추론)

  • Kim, Seon-Min;Han, Byunghyun;Heo, Junyeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.107-114
    • /
    • 2021
  • Recently artificial intelligence technology has been introduced in various fields and various machine learning models have been operated in various frameworks as academic interest has increased. However, these frameworks have different data formats, which lack interoperability, and to overcome this, the open neural network exchange format, ONNX, has been proposed. In this paper we describe how to transform multiple machine learning models to ONNX, and propose algorithms and inference systems that can determine machine learning techniques in an integrated ONNX format. Furthermore we compare the inference results of the models before and after the ONNX transformation, showing that there is no loss or performance degradation of the learning results between the ONNX transformation.

A Study on Agricultural Product Warehouse Management based on Ontology (온톨로지기반 농수산물 창고관리에 관한 연구)

  • Kim, John;Lee, Hyun-Chang;Koh, Jin-Gwang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.9
    • /
    • pp.205-210
    • /
    • 2009
  • This paper proposes an ontology-based context aware system model for the purpose of storing and managing agricultural products using ubiquitous sensors to share and distribute information. In these days, according to penetrating ubiquitous technologies into our way of life, the importance of information is increasing gradually. The importance of ontology in a domain is getting as well. Therefore, this paper designs and build an ontology-based agricultural products warehouse model using context aware state information obtained by using wireless sensors. Also, it shows the result described by graphical ontology results to share common understanding on the structure of context information among users, devices and services to enable semantic interoperability owing to the information of the context aware state of the warehouse.

Managing and Modeling Strategy of Geo-features in Web-based 3D GIS

  • Kim, Kyong-Ho;Choe, Seung-Keol;Lee, Jong-Hun;Yang, Young-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.75-79
    • /
    • 1999
  • Geo-features play a key role in object-oriented or feature-based geo-processing system. So the strategy for how-to-model and how-to-manage the geo-features builds the main architecture of the entire system and also supports the efficiency and functionality of the system. Unlike the conventional 2D geo-processing system, geo-features in 3B GIS have lots to be considered to model regarding the efficient manipulation and analysis and visualization. When the system is running on the Web, it should also be considered that how to leverage the level of detail and the level of automation of modeling in addition to the support for client side data interoperability. We built a set of 3D geo-features, and each geo-feature contains a set of aspatial data and 3D geo-primitives. The 3D geo-primitives contain the fundamental modeling data such as the height of building and the burial depth of gas pipeline. We separated the additional modeling data on the geometry and appearance of the model from the fundamental modeling data to make the table in database more concise and to allow the users more freedom to represent the geo-object. To get the users to build and exchange their own data, we devised a file format called VGFF 2.0 which stands for Virtual GIS File Format. It is to describe the three dimensional geo-information in XML(eXtensible Markup Language). The DTD(Document Type Definition) of VGFF 2.0 is parsed using the DOM(Document Object Model). We also developed the authoring tools for. users can make their own 3D geo-features and model and save the data to VGFF 2.0 format. We are now expecting the VGFF 2.0 evolve to the 3D version of SVG(Scalable Vector Graphics) especially for 3D GIS on the Web.

  • PDF

Managing Scheme for 3-dimensional Geo-features using XML

  • Kim, Kyong-Ho;Choe, Seung-Keol;Lee, Jong-Hun;Yang, Young-Kyu
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1999.12a
    • /
    • pp.47-51
    • /
    • 1999
  • Geo-features play a key role in object-oriented or feature-based geo-processing system. So the strategy for how-to-model and how-to-manage the geo-features builds the main architecture of the entire system and also supports the efficiency and functionality of the system. Unlike the conventional 2D geo-processing system, geo-features in 3D GIS have lots to be considered to model regarding the efficient manipulation and analysis and visualization. When the system is running on the Web, it should also be considered that how to leverage the level of detail and the level of automation of modeling in addition to the support for client side data interoperability. We built a set of 3D geo-features, and each geo-feature contains a set of aspatial data and 3D geo-primitives. The 3D geo-primitives contain the fundamental modeling data such as the height of building and the burial depth of gas pipeline. We separated the additional modeling data on the geometry and appearance of the model from the fundamental modeling data to make the table in database more concise and to allow the users more freedom to represent the geo-object. To get the users to build and exchange their own data, we devised a fie format called VGFF 2.0 which stands for Virtual GIS File Format. It is to describe the three dimensional geo-information in XML(extensible Markup Language). The DTD(Document Type Definition) of VGFF 2.0 is parsed using the DOM(Document Object Model). We also developed the authoring tools for users can make their own 3D geo-features and model and save the data to VGFF 2.0 format. We are now expecting the VGFF 2.0 evolve to the 3D version of SVG(Scalable Vector Graphics) especially for 3D GIS on the Web.

  • PDF

A Preliminary Study on the Development of Data Model for Interoperability of Information in Building Disaster Prevention (건물 방재 분야 정보의 상호운용성을 위한 데이터모델 개발에 관한 기초연구)

  • Hwang, ByungJu;Kim, Jang-Wook;Kim, TaeHoon
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.4
    • /
    • pp.30-40
    • /
    • 2019
  • As the urban scale changes and the construction technology develops, the living space is being expanded in three dimensions. However, despite the development of construction technology represented by the appearance of skyscrapers, damage to high - rise buildings with dense population can be rather high. In order to solve such a situation, digital twin technology that can control and predict the real world in real time can be an alternative, and it is necessary to utilize pre-constructed spatial information actively. Therefore, this study aims to provide a standardized data model for using existing such information as well as various information produced in the future to the building disaster prevention field. To this end, we developed a data model that extends the CityGML standard, a representative city information model, to disaster prevention.

A Study on Development of 3D Data Model for Underground Facilities Using CityGML ADE (CityGML ADE를 이용한 3차원 지하시설물 데이터 모델 개발에 관한 연구)

  • Jeong, Da Woon;Shin, Dong Bin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.4
    • /
    • pp.245-252
    • /
    • 2021
  • Underground facilities were constructed as needed by various management organizations, the result of which was the disordered and scattered underground spaces. This phenomenon can be viewed as the main cause of safety accidents in the underground space. To solve this problem, research on systematic construction and management of underground facilities should be conducted. Therefore, to improve the accuracy and the quality of information and to facilitate the systematic construction and management of underground facility information, this study aims to establish a 3D data model that conforms to international spatial information standards for pipeline underground facilities and to implement the data model to enable visualization. The result of this study can be used to improve the consistency of information not only between underground facilities, but also the correspondence between above ground and underground facilities. As such, this study has academic significance in that it presents an integrated data model that includes various objects in the ground and underground spaces and enables interoperability between diverse domain data.

A Study on BIM Implementation Process Model through Importing Vertex Coordinate Data for Customized Curtain Wall Panel - Focusing on importing Vertex Coordinate data to Revit from Rhino - (맞춤형 커튼월 패널의 꼭짓점 좌표데이터 전이를 통한 BIM 형태 구축 프로세스 모델 연구 - 라이노에서 레빗으로의 좌표데이터 전이를 중심으로 -)

  • Ko, Sung Hak
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.11
    • /
    • pp.69-78
    • /
    • 2019
  • The purpose of this study is to propose a modeling methodology through the exchange of coordinate data of a three-dimensional custom curtain wall panel between Rhino and Revit, and to examine the validity of the model implemented in the drawing. Although the modeling means and method are different, a fundamental principle is that all three-dimensional modeling begins by defining the position of the points, the most primitive element of geometry, in the XYZ coordinate space. For the BIM modeling methodology proposal based on this geometry basic concept, the functions and characteristics associated with the points of Rhino and Revit programs are identified, and then BIM implementation process model is organized and systemized through the setting of the interoperability process algorithm. The BIM implementation process model proposed in this study is (1) Modeling and panelizing surface into individual panels using Rhino and Grasshopper; (2) Extraction of vertex coordinate data from individual panels and create CSV file; (3) Curtain wall modeling through Adaptive Component Family in Revit and (4) Automatic creation of Revit curtain wall panels through API. The proposed process model is expected to help reduce design errors and improve component and construction quality by automatically converting general elements into architectural meaningful information, automating a set of processes that build them into BIM data, and enabling consistent and integrated design management.