• Title/Summary/Keyword: Internet of things (IoT)

Search Result 1,878, Processing Time 0.025 seconds

Analysis on Coexistence between Unlicensed Wireless Device based on 802.11ah and LTE User Equipment (802.11ah 기반 비면허 무선기기와 LTE 단말기 간 공존 분석)

  • Lee, Il-Kyoo;Park, Yeon-Gyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2015-2021
    • /
    • 2017
  • Recently, a lot of attention is fallen to IoT(Internet of Things) for hyper-connected society and the number of unlicensed wireless device has been increasing. Thus, this paper analyzed the impact of unlicensed wireless device on the basis of 802.11ah on licensed LTE user equipment in 900 MHz frequency band for efficient frequency use. As the interference analysis method, Minimum Coupling Loss (MCL) method and Monte Carlo (MC) method were used. In case of one interferer, minimum separation distance between interferer and victim was calculated as about 22 m through the MCL method under the assumption of the worst case. The maximum number of interferer to meet the interference probability of 5% below within a cell radius of the victim was computed as about 3000 by using MC method based on statistical technique. The analysis method and results in this paper are expected to be used for the coexistence between unlicensed wireless device and licensed wireless device.

A Study on the Design of Hiking Boots Equipped with GPS and its Midsole Manufactured by 3D Porous Polymer Printing Method (위치추적기를 내장한 산악용 신발 디자인 및 3D 다공성 폴리머 프린팅을 이용한 중창 제작에 관한 연구)

  • Pyo, Jeong-Hee;Yoo, Chan-Ju;Shin, Jong-Kuk;Lee, Tae-Gu;Shin, Bo-Sung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.83-88
    • /
    • 2016
  • Over the last five years, 568 people have died while hiking according to 2015 statistics from the public safety ministry. Among those deaths, approximately 33% were due to loss of footing or falling. In this respect, the highly advanced functions of hiking boots should be considered to prevent these unfortunate accidents. For example, by utilizing the Internet of Things (IoT) and Information and Communications Technology (ICT), hiking boots equipped with a Global Positioning System (GPS) or vital signs monitoring systems should be considered. In addition, many challenges remain for the production of 3D printed hiking boots, because the functions of hiking boots are variable, which is important when handling changing terrains and situations. The design of customized hiking boots was introduced in this paper, and 3D printing applications for midsoles using a Porous Polymer Printing (PPP) method was also suggested to verify the possibility of manufacturing hiking boots.

Hybrid Simulated Annealing for Data Clustering (데이터 클러스터링을 위한 혼합 시뮬레이티드 어닐링)

  • Kim, Sung-Soo;Baek, Jun-Young;Kang, Beom-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.92-98
    • /
    • 2017
  • Data clustering determines a group of patterns using similarity measure in a dataset and is one of the most important and difficult technique in data mining. Clustering can be formally considered as a particular kind of NP-hard grouping problem. K-means algorithm which is popular and efficient, is sensitive for initialization and has the possibility to be stuck in local optimum because of hill climbing clustering method. This method is also not computationally feasible in practice, especially for large datasets and large number of clusters. Therefore, we need a robust and efficient clustering algorithm to find the global optimum (not local optimum) especially when much data is collected from many IoT (Internet of Things) devices in these days. The objective of this paper is to propose new Hybrid Simulated Annealing (HSA) which is combined simulated annealing with K-means for non-hierarchical clustering of big data. Simulated annealing (SA) is useful for diversified search in large search space and K-means is useful for converged search in predetermined search space. Our proposed method can balance the intensification and diversification to find the global optimal solution in big data clustering. The performance of HSA is validated using Iris, Wine, Glass, and Vowel UCI machine learning repository datasets comparing to previous studies by experiment and analysis. Our proposed KSAK (K-means+SA+K-means) and SAK (SA+K-means) are better than KSA(K-means+SA), SA, and K-means in our simulations. Our method has significantly improved accuracy and efficiency to find the global optimal data clustering solution for complex, real time, and costly data mining process.

Application of 4th Industrial Revolution Technology to Records Management (제4차 산업혁명 기술의 기록관리 적용 방안)

  • An, Dae-jin;Yim, Jin-hee
    • The Korean Journal of Archival Studies
    • /
    • no.54
    • /
    • pp.211-248
    • /
    • 2017
  • This study examined ways to improve records management by using the new technology of the Fourth Industrial Revolution. To do this, we selected four technologies that have a huge impact on the production and management of records such as cloud, big data, artificial intelligence, and the Internet of Things. We tested these technologies and summarized their concepts, characteristics, and applications. The characteristics of the changed production records were analyzed by each technology. Because of new technology, the production of records has rapidly increased and the types of records have become diverse. With this, there is also a need for solutions to explain the quality of data and the context of production. To effectively introduce each technology into records management, a roadmap should be designed by classifying which technology should be applied immediately and which should be applied later depending on the maturity of the technology. To cope with changes in the characteristics of production records, a flexible data structure must be produced in a standardized format. Public authorities should also be able to procure Software as a Service (SaaS) products and use digital technology to improve the quality of public services.

Machine learning application for predicting the strawberry harvesting time

  • Yang, Mi-Hye;Nam, Won-Ho;Kim, Taegon;Lee, Kwanho;Kim, Younghwa
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.2
    • /
    • pp.381-393
    • /
    • 2019
  • A smart farm is a system that combines information and communication technology (ICT), internet of things (IoT), and agricultural technology that enable a farm to operate with minimal labor and to automatically control of a greenhouse environment. Machine learning based on recently data-driven techniques has emerged with big data technologies and high-performance computing to create opportunities to quantify data intensive processes in agricultural operational environments. This paper presents research on the application of machine learning technology to diagnose the growth status of crops and predicting the harvest time of strawberries in a greenhouse according to image processing techniques. To classify the growth stages of the strawberries, we used object inference and detection with machine learning model based on deep learning neural networks and TensorFlow. The classification accuracy was compared based on the training data volume and training epoch. As a result, it was able to classify with an accuracy of over 90% with 200 training images and 8,000 training steps. The detection and classification of the strawberry maturities could be identified with an accuracy of over 90% at the mature and over mature stages of the strawberries. Concurrently, the experimental results are promising, and they show that this approach can be applied to develop a machine learning model for predicting the strawberry harvesting time and can be used to provide key decision support information to both farmers and policy makers about optimal harvest times and harvest planning.

Smart Tourism: A Study of Mobile Application Use by Tourists Visiting South Korea

  • Brennan, Bradley S.;Koo, Chulmo;Bae, Kyung Mi
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.10
    • /
    • pp.1-9
    • /
    • 2018
  • The purpose of this exploratory study is to identify the mobile phone applications (apps) used by foreign tourists visiting South Korea through a pilot study using focus groups and individual interviews. Concentrating on tourist mobile app use in a smart tourism environment and categorized through a taxonomy of mobile applications lays the framework and determines the factors boosting tourism smartphone app trends by foreign tourists visiting South Korea. Researchers collected data through ethnographic methods and analyzed it through qualitative research to uncover major themes within the smart tourism app use phenomenon. The researchers coded, counted, analyzed, and then divided the findings gleaned from a pilot study and interviews into a taxonomy of seven logical smartphone app categories. The labeling and coding of all the data accounting for similarities and differences can be recognized and are logically discussed in the implications of the apps used by tourists to assist tourist destinations. More specifically these findings will assist smart tourism destinations by better understanding foreign tourist smartphone app use behavior. Tourists visiting South Korea interviewed in this study exhibited significant mastery of Internet of Things (IoT) technologies, craved free WiFi access, and utilized smartphone apps for all facets of their travel. Findings show major concentrations of app use in bookings of accommodations, tourist attractions, online shopping, navigation, wayfinding, augmented reality, information searching, language translation, gaming, and online dating while traveling in South Korea.

Performance Evaluation of Semi-Persistent Scheduling in a Narrowband LTE System for Internet of Things (사물인터넷을 위한 협대역 LTE 시스템에서의 준지속적 스케줄링의 성능 평가)

  • Kim, Sunkyung;Cha, Wonjung;So, Jaewoo;Na, Minsoo;Choi, Changsoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.1001-1009
    • /
    • 2016
  • In LTE networks, the base station transmits control information over the physical downlink control channel (PDCCH) including scheduling grants, which are used to indicate the resources that the user equipment uses to send data to the base station. Because the size of the PDCCH message and the number of the PDCCH transmissions increase in proportion to the number of user equipments, the overhead of the PDCCH may cause serious network congestion problems in the narrowband LTE (NB-LTE) system. This paper proposes the compact PDCCH information bit allocation to reduce the size of the PDCCH message and evaluates the performance of the semi-persistent scheduling (SPS) in the NB-LTE system. The simulation results show that the SPS can significantly reduce the signaling overhead of the PDCCH and therefore increase the system utilization.

Temporal Interval Refinement for Point-of-Interest Recommendation (장소 추천을 위한 방문 간격 보정)

  • Kim, Minseok;Lee, Jae-Gil
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.86-98
    • /
    • 2018
  • Point-of-Interest(POI) recommendation systems suggest the most interesting POIs to users considering the current location and time. With the rapid development of smartphones, internet-of-things, and location-based social networks, it has become feasible to accumulate huge amounts of user POI visits. Therefore, instant recommendation of interesting POIs at a given time is being widely recognized as important. To increase the performance of POI recommendation systems, several studies extracting users' POI sequential preference from POI check-in data, which is intended for implicit feedback, have been suggested. However, when constructing a model utilizing sequential preference, the model encounters possibility of data distortion because of a low number of observed check-ins which is attributed to intensified data sparsity. This paper suggests refinement of temporal intervals based on data confidence. When building a POI recommendation system using temporal intervals to model the POI sequential preference of users, our methodology reduces potential data distortion in the dataset and thus increases the performance of the recommendation system. We verify our model's effectiveness through the evaluation with the Foursquare and Gowalla dataset.

Analysis of Occupational Injury and Feature Importance of Fall Accidents on the Construction Sites using Adaboost (에이다 부스트를 활용한 건설현장 추락재해의 강도 예측과 영향요인 분석)

  • Choi, Jaehyun;Ryu, HanGuk
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.11
    • /
    • pp.155-162
    • /
    • 2019
  • The construction industry is the highest safety accident causing industry as 28.55% portion of all industries' accidents in Korea. In particular, falling is the highest accidents type composed of 60.16% among the construction field accidents. Therefore, we analyzed the factors of major disaster affecting the fall accident and then derived feature importances by considering various variables. We used data collected from Korea Occupational Safety & Health Agency (KOSHA) for learning and predicting in the proposed model. We have an effort to predict the degree of occupational fall accidents by using the machine learning model, i.e., Adaboost, short for Adaptive Boosting. Adaboost is a machine learning meta-algorithm which can be used in conjunction with many other types of learning algorithms to improve performance. Decision trees were combined with AdaBoost in this model to predict and classify the degree of occupational fall accidents. HyOperpt was also used to optimize hyperparameters and to combine k-fold cross validation by hierarchy. We extracted and analyzed feature importances and affecting fall disaster by permutation technique. In this study, we verified the degree of fall accidents with predictive accuracy. The machine learning model was also confirmed to be applicable to the safety accident analysis in construction site. In the future, if the safety accident data is accumulated automatically in the network system using IoT(Internet of things) technology in real time in the construction site, it will be possible to analyze the factors and types of accidents according to the site conditions from the real time data.

3D-Porous Structured Piezoelectric Strain Sensors Based on PVDF Nanocomposites (PVDF 나노 복합체 기반 3차원 다공성 압전 응력 센서)

  • Kim, Jeong Hyeon;Kim, Hyunseung;Jeong, Chang Kyu;Lee, Han Eol
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.307-311
    • /
    • 2022
  • With the development of Internet of Things (IoT) technologies, numerous people worldwide connect with various electronic devices via Human-Machine Interfaces (HMIs). Considering that HMIs are a new concept of dynamic interactions, wearable electronics have been highlighted owing to their lightweight, flexibility, stretchability, and attachability. In particular, wearable strain sensors have been applied to a multitude of practical applications (e.g., fitness and healthcare) by conformally attaching such devices to the human skin. However, the stretchable elastomer in a wearable sensor has an intrinsic stretching limitation; therefore, structural advances of wearable sensors are required to develop practical applications of wearable sensors. In this study, we demonstrated a 3-dimensional (3D), porous, and piezoelectric strain sensor for sensing body movements. More specifically, the device was fabricated by mixing polydimethylsiloxane (PDMS) and polyvinylidene fluoride nanoparticles (PVDF NPs) as the matrix and piezoelectric materials of the strain sensor. The porous structure of the strain sensor was formed by a sugar cube-based 3D template. Additionally, mixing methods of PVDF piezoelectric NPs were optimized to enhance the device sensitivity. Finally, it is verified that the developed strain sensor could be directly attached onto the finger joint to sense its movements.