• Title/Summary/Keyword: Internet dependency

Search Result 106, Processing Time 0.021 seconds

Encryption Scheme for MPEG-4 Media Transmission Exploiting Frame Dropping

  • Shin, Dong-Kyoo;Shin, Dong-Il;Shin, Jae-Wan;Kim, Soo-Han;Kim, Seung-Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.925-938
    • /
    • 2010
  • Depending on network conditions, a communication network could be overloaded when media are transmitted. Research has been carried out to lessen network overloading, such as by filtering, load distribution, frame dropping, and other methods. Among these methods, one of the most effective is frame dropping, which reduces specified video frames for bandwidth diminution. In frame dropping, B-frames are dropped and then I- and P-frames are dropped, based on the dependency among the frames. This paper proposes a scheme for protecting copyrights by encryption, when frame dropping is applied to reduce the bandwidth of media based on the MPEG-4 file format. We designed two kinds of frame dropping: the first stores and then sends the dropped files and the other drops frames in real time when transmitting. We designed three kinds of encryption methods using the DES algorithm to encrypt MPEG-4 data: macro block encryption in I-VOP, macro block and motion vector encryption in P-VOP, and macro block and motion vector encryption in I-, P-VOP. Based on these three methods, we implemented a digital rights management solution for MPEG-4 data streaming. We compared the results of dropping, encryption, decryption, and the quality of the video sequences to select an optimal method, and found that there was no noticeable difference between the video sequences recovered after frame dropping and the ones recovered without frame dropping. The best performance in the encryption and decryption of frames was obtained when we applied the macro block and motion vector encryption in I-, P-VOP.

Extended GTRBAC Delegation Model for Access Control Enforcement in Enterprise Environments (기업환경의 접근제어를 위한 확장된 GTRBAC 위임 모델)

  • Hwang Yu-Dong;Park Dong-Gue
    • Journal of Internet Computing and Services
    • /
    • v.7 no.1
    • /
    • pp.17-30
    • /
    • 2006
  • With the wide acceptance of the Internet and the Web, volumes of information and related users have increased and companies have become to need security mechanisms to effectively protect important information for business activities and security problems have become increasingly difficult. This paper proposes a improved access control model for access control enforcement in enterprise environments through the integration of the temporal constraint character of the GT-RBAC model. sub-role hierarchies concept and PBDM(Permission Based Delegation Model). The proposed model. called Extended GT-RBAC(Extended Generalized Temporal Role Based Access Control) delegation Model. supports characteristics of GTRBAC model such as of temporal constraint, various time-constrained cardinality, control flow dependency and separation of duty constraints (SoDs). Also it supports conditional inheritance based on the degree of inheritance and business characteristics by using sub-roles hierarchies and supports permission based delegation, user to user delegation, role to role delegation, multi-step delegation and temporal delegation by using PBDM.

  • PDF

Multi Label Deep Learning classification approach for False Data Injection Attacks in Smart Grid

  • Prasanna Srinivasan, V;Balasubadra, K;Saravanan, K;Arjun, V.S;Malarkodi, S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2168-2187
    • /
    • 2021
  • The smart grid replaces the traditional power structure with information inventiveness that contributes to a new physical structure. In such a field, malicious information injection can potentially lead to extreme results. Incorrect, FDI attacks will never be identified by typical residual techniques for false data identification. Most of the work on the detection of FDI attacks is based on the linearized power system model DC and does not detect attacks from the AC model. Also, the overwhelming majority of current FDIA recognition approaches focus on FDIA, whilst significant injection location data cannot be achieved. Building on the continuous developments in deep learning, we propose a Deep Learning based Locational Detection technique to continuously recognize the specific areas of FDIA. In the development area solver gap happiness is a False Data Detector (FDD) that incorporates a Convolutional Neural Network (CNN). The FDD is established enough to catch the fake information. As a multi-label classifier, the following CNN is utilized to evaluate the irregularity and cooccurrence dependency of power flow calculations due to the possible attacks. There are no earlier statistical assumptions in the architecture proposed, as they are "model-free." It is also "cost-accommodating" since it does not alter the current FDD framework and it is only several microseconds on a household computer during the identification procedure. We have shown that ANN-MLP, SVM-RBF, and CNN can conduct locational detection under different noise and attack circumstances through broad experience in IEEE 14, 30, 57, and 118 bus systems. Moreover, the multi-name classification method used successfully improves the precision of the present identification.

Tool Development for Identifying Components using Object-Oriented Domain Models (객체 지향 도메인 모델을 이용한 컴포넌트 식별 도구 개발)

  • 이우진;권오천
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.4
    • /
    • pp.381-392
    • /
    • 2003
  • Component-based Development(CBD) based on the software reuse has been more attractive from software companies that want to enhance software productivity. However, since component identification process is mainly dependent on domain expert´s intuition and experience, it was very difficult to develop tools for supporting the component identification process. In this paper, we propose a systematic procedure of identifying reusable component by using object dependencies and object usages and provide a design and implementation of its supporting tool. In object-oriented domain models. there exists several diagrams which are described in different viewpoints. From these diagrams, object dependency and object usages are extracted and merged into an object dependency network, which is a basis for performing a comfonent identification algorithm. Finally, through a case study of internet banking system, we evaluate the applicability of the proposed identification process and tool.

An Unequal Protection FEC Scheme for Video over Optical Access Networks

  • Cao, Yingying;Chen, Xue;Wang, Liqian;Li, Xicong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.6
    • /
    • pp.1463-1479
    • /
    • 2013
  • In this paper, we propose an unequal protection physical coding sub-layer (PCS) forward error correction (FEC) scheme for efficient and high-quality transmission of video data over optical access networks. Through identifying and resolving the unequal importance of different video frames and passing this importance information from MAC-layer to PCS, FEC scheme of PCS can be adaptive to application-layer data. Meanwhile, we jointly consider the different channel situations of optical network unit (ONU) and improve the efficiency of FEC redundancy by channel adaptation. We develop a theoretical algorithm and a hardware method to achieve efficient FEC assignment for the proposed unequal protection scheme. The theoretical FEC assignment algorithm is to obtain the optimal FEC redundancy allocation vector that results in the optimum performance index, namely frame error rate, based on the identified differential importance and channel situations. The hardware method aims at providing a realistic technical path with negligible hardware cost increment compared with the traditional FEC scheme. From the simulation results, the proposed Channel and Application-layer data Adaptation Unequal Protection (CAAUP) FEC scheme along with the FEC ratio assignment algorithm and the hardware method illustrates the ability of efficient and high-quality transmission of video data against the random errors in the channel of optical access networks.

An Intelligent Framework for Test Case Prioritization Using Evolutionary Algorithm

  • Dobuneh, Mojtaba Raeisi Nejad;Jawawi, Dayang N.A.
    • Journal of Internet Computing and Services
    • /
    • v.17 no.5
    • /
    • pp.89-95
    • /
    • 2016
  • In a software testing domain, test case prioritization techniques improve the performance of regression testing, and arrange test cases in such a way that maximum available faults be detected in a shorter time. User-sessions and cookies are unique features of web applications that are useful in regression testing because they have precious information about the application state before and after making changes to software code. This approach is in fact a user-session based technique. The user session will collect from the database on the server side, and test cases are released by the small change configuration of a user session data. The main challenges are the effectiveness of Average Percentage Fault Detection rate (APFD) and time constraint in the existing techniques, so in this paper developed an intelligent framework which has three new techniques use to manage and put test cases in group by applying useful criteria for test case prioritization in web application regression testing. In dynamic weighting approach the hybrid criteria which set the initial weight to each criterion determines optimal weight of combination criteria by evolutionary algorithms. The weight of each criterion is based on the effectiveness of finding faults in the application. In this research the priority is given to test cases that are performed based on most common http requests in pages, the length of http request chains, and the dependency of http requests. To verify the new technique some fault has been seeded in subject application, then applying the prioritization criteria on test cases for comparing the effectiveness of APFD rate with existing techniques.

A Coupling Metric between Classes for Efficient System Design (효율적인 시스템 설계를 위한 클래스 간의 결합 척도)

  • Choi, Mi-Sook;Lee, Jong-Suk;Lee, Seo-Jeong
    • Journal of Internet Computing and Services
    • /
    • v.9 no.5
    • /
    • pp.85-97
    • /
    • 2008
  • Recently, service-oriented systems have been issued by their properties of reducing software development time and effort by reusing functional service units. The reusability of services can effectively promote through loose coupling between services and loose coupling between services depends on component-based system. That is, the component-based system is designed by grouping the tightly coupled classes of the object-oriented system and the service-oriented system is designed by the component-based system. Therefore, to design the component-based system and service-oriented system efficiently, a metric to measure the coupling between classes accurately needs. In this paper, we propose a coupling metric between classes applying a structural property, a dynamic property, and the normalized value by 0-1. We prove the theoretical soundness of the proposed metric by the axioms of briand et al, and suggest the accuracy and practicality through a case study. We suggest the evaluation results of the proposed metric through a comparison with the conventional metrics.

  • PDF

Mobile Robot Control using Hand Shape Recognition (손 모양 인식을 이용한 모바일 로봇제어)

  • Kim, Young-Rae;Kim, Eun-Yi;Chang, Jae-Sik;Park, Se-Hyun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.4
    • /
    • pp.34-40
    • /
    • 2008
  • This paper presents a vision based walking robot control system using hand shape recognition. To recognize hand shapes, the accurate hand boundary needs to be tracked in image obtained from moving camera. For this, we use an active contour model-based tracking approach with mean shift which reduces dependency of the active contour model to location of initial curve. The proposed system is composed of four modules: a hand detector, a hand tracker, a hand shape recognizer and a robot controller. The hand detector detects a skin color region, which has a specific shape, as hand in an image. Then, the hand tracking is performed using an active contour model with mean shift. Thereafter the hand shape recognition is performed using Hue moments. To assess the validity of the proposed system we tested the proposed system to a walking robot, RCB-1. The experimental results show the effectiveness of the proposed system.

Energy-Efficient Resource Allocation for Application Including Dependent Tasks in Mobile Edge Computing

  • Li, Yang;Xu, Gaochao;Ge, Jiaqi;Liu, Peng;Fu, Xiaodong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2422-2443
    • /
    • 2020
  • This paper studies a single-user Mobile Edge Computing (MEC) system where mobile device (MD) includes an application consisting of multiple computation components or tasks with dependencies. MD can offload part of each computation-intensive latency-sensitive task to the AP integrated with MEC server. In order to accomplish the application faultlessly, we calculate out the optimal task offloading strategy in a time-division manner for a predetermined execution order under the constraints of limited computation and communication resources. The problem is formulated as an optimization problem that can minimize the energy consumption of mobile device while satisfying the constraints of computation tasks and mobile device resources. The optimization problem is equivalently transformed into solving a nonlinear equation with a linear inequality constraint by leveraging the Lagrange Multiplier method. And the proposed dual Bi-Section Search algorithm Bi-JOTD can efficiently solve the nonlinear equation. In the outer Bi-Section Search, the proposed algorithm searches for the optimal Lagrangian multiplier variable between the lower and upper boundaries. The inner Bi-Section Search achieves the Lagrangian multiplier vector corresponding to a given variable receiving from the outer layer. Numerical results demonstrate that the proposed algorithm has significant performance improvement than other baselines. The novel scheme not only reduces the difficulty of problem solving, but also obtains less energy consumption and better performance.

A Modified Proportional Scheduler and Evaluation Method (수정 비례 지분 스케쥴러 및 평가법 설계)

  • 김현철;박정석
    • Journal of Internet Computing and Services
    • /
    • v.3 no.2
    • /
    • pp.15-26
    • /
    • 2002
  • Since multimedia data such as video and audio data are displayed within a certain time constraint, their computation and manipulation should be handled under limited condition. Traditional real-time scheduling algorithms could net be directly applicable, because they are not suitable for multimedia scheduling applications which support many clients at the same time. Rate Regulating Proportional Share Scheduling Algorithm is a scheduling algorithm considered the time constraint of the multimedia data. This scheduling algorithm uses a rate regulator which prevents tasks from receiving more resource than its share in a given period. But this algorithm loses fairness, and does not show graceful degradation of performance under overloaded situation, This paper proposes a new modified algorithm. namely Modified Proportional Share Scheduling Algorithm considering the characteristics of multimedia data such as its continuity and time dependency, Proposed scheduling algorithm shows graceful degradation of performance in overloaded situation and the reduction in the number of context switching, Furthermore, a new evaluation method is proposed which can evaluate the flexibility of scheduling algorithm.

  • PDF