• 제목/요약/키워드: Internet and e-Business Technology

검색결과 333건 처리시간 0.018초

빅데이터 기반 추천시스템 구현을 위한 다중 프로파일 앙상블 기법 (A Multimodal Profile Ensemble Approach to Development of Recommender Systems Using Big Data)

  • 김민정;조윤호
    • 지능정보연구
    • /
    • 제21권4호
    • /
    • pp.93-110
    • /
    • 2015
  • 기존의 협업필터링 추천시스템 연구는 상품에 대한 고객의 평점(rating)이나 구매 여부 데이터로부터 하나의 프로파일을 생성하고 이를 기반으로 추천 성능을 향상시킬 수 있는 새로운 알고리즘을 개발하는 위주로 진행되어 왔다. 그러나 빅데이터 환경이 도래하면서 기업이 수집할 수 있는 고객 데이터가 풍부해지고 다양해짐에 따라, 보다 정확하게 고객의 선호도나 행태를 파악하는 것이 가능하게 되었고 이러한 데이터, 즉 퍼스널 빅데이터(personal big data)를 추천시스템에 활용하는 연구의 필요성이 대두되고 있다. 본 연구에서는 마케팅의 시장세분화 이론에 근거하여 퍼스널 빅데이터로부터 고객의 선호도나 행태를 다양한 관점에서 표현할 수 있는 5종의 다중 프로파일(multimodal profile)을 개발하고, 이를 활용하여 협업필터링 추천시스템의 성능을 개선하고자 한다. 제안하는 5종의 다중 프로파일은 프로파일 통합 유사도, 개별 프로파일 유사도 평균, 개별 프로파일 유사도 가중 평균이라는 세 가지 앙상블 기법을 통해 협업필터링의 이웃(neighborhood) 탐색과정에 적용된다. 실제 퍼스널 빅데이터에 본 연구에서 제안하는 방법론을 적용한 결과, 단일 프로파일을 사용하는 협업필터링 알고리즘보다 추천 성능이 상당히 개선되었으며 앙상블 방법 중에서는 개별 프로파일 유사도 가중 평균 기법이 가장 높은 추천 성능을 보여주었다. 본 연구는 빅데이터 환경에서 추천시스템을 개발하고자 할 때, 어떠한 성격의 데이터로부터 고객의 특성을 규명하는 프로파일을 만들고 이를 어떻게 결합하여 사용하는 것이 효과적인 지 처음으로 제안하였다는 점에서 그 의의가 있다.

연관상품 추천을 위한 회귀분석모형 기반 연관 규칙 척도 결합기법 (A Regression-Model-based Method for Combining Interestingness Measures of Association Rule Mining)

  • 이동원
    • 지능정보연구
    • /
    • 제23권1호
    • /
    • pp.127-141
    • /
    • 2017
  • 인터넷과 모바일 관련 기술의 발전과 기기의 보급은 물리적 공간의 제약을 극복하게 하고, 다양한 상품과 서비스를 소비자에게 제공함으로써, 소비자에게 선택의 폭을 넓히는 기회를 제공하는 반면, 많은 시간과 노력을 기울이고도 소비자가 자신의 기호에 적합한 품목을 선택하기 힘들어지는 부작용을 낳았다. 이에 따라, 기업은 추천 시스템을 활용하여 소비자가 원하는 품목을 더 쉽게 찾는 수단을 제공하고 있다. 상품 간의 연관성을 통계적으로 분석하는 연관 규칙 마이닝 기법은 직관적인 형태의 척도를 규칙과 함께 제공함으로써, 이로부터 도출된 규칙에 포함된 품목 간의 관계를 이해하고, 이를 추천에 적용하기 쉽다는 강점을 갖는다. 그러나, 서로 다른 규칙의 척도가 일관되게 어느 한 쪽의 규칙이 더 우위에 있음을 알려주지 못한다면, 수많은 품목 중 추천에 적합한 품목을 적절히 선별해내기 힘든 상황이 발생한다. 본 연구에서는 추천 상품의 순위를 결정할 수 있도록 연관 규칙 마이닝 기법에 회귀분석모형을 보완적으로 적용하는 방안을 제시하고자 수행되었다. 연관 규칙 마이닝에서 보편적으로 사용되고 있는 지지도, 신뢰도, 향상도를 활용하여 모형을 구현함으로써, 직관적으로 이해하기 쉬울 뿐만 아니라, 실무에서도 활용하기 쉬운 방안을 제시하고자 하였다. 국내 최대규모의 온라인 쇼핑몰의 주문 데이터를 활용한 실험을 통해, 제안된 모형으로부터 얻어진 추천 점수를 기반으로 추천상품을 결정하고, 이를 추천에 적용함으로써 추천 적중률을 향상시킬 수 있음을 보였다. 특히, 최근 모바일 상거래가 빠르게 확산됨에 따라, 제한된 화면에 한정된 수의 추천 품목을 제시해야 하는 상황에서 적합한 추천 기법임을 확인할 수 있었다.

온라인 상품평의 내용적 특성이 소비자의 인지된 유용성에 미치는 영향 (Impact of Semantic Characteristics on Perceived Helpfulness of Online Reviews)

  • 박윤주;김경재
    • 지능정보연구
    • /
    • 제23권3호
    • /
    • pp.29-44
    • /
    • 2017
  • 인터넷 상거래에서, 소비자들은 기존에 제품을 구매한 다른 사용자들이 작성한 상품평에 많은 영향을 받는다. 그러나, 상품평이 점차 축적되어감에 따라, 소비자들이 방대한 상품평을 일일이 확인하는데 많은 시간과 노력이 소요되고, 또한 무성의하게 작성된 상품평들은 오히려 소비자들의 불편을 초래하기도 한다. 이에, 본 연구는 온라인 상품평의 유용성에 영향을 미치는 요인들을 분석하여, 소비자들에게 실제로 도움이 될 수 있는 상품평을 선별적으로 제공하는 예측모형을 도출하는 것을 목적으로 한다. 이를 위해, 텍스트마이닝 기법을 사용하여, 상품평에 포함되어있는 다양한 언어적, 심리적, 지각적 요소들을 추출하였으며, 이러한 요소들 중에서 상품평의 유용성에 영향을 미치는 결정요인이 무엇인지 파악하였다. 특히, 경험재인 의류군과 탐색재인 전자제품군에 대한 상품평의 특성 및 유용성 결정요인이 상이할 수 있음을 고려하여, 제품군별로 상품평의 특성을 비교하고, 각각의 결정요인을 도출하였다. 본 연구에는 아마존닷컴(Amazon.com)의 의류군 상품평 7,498건과 전자제품군 상품평 106,962건이 사용되었다. 또한, 언어분석 소프트웨어인 LIWC(Linguistic Inquiry and Word Count)를 활용하여 상품평에 포함된 특징들을 추출하였고, 이후, 데이터마이닝 소프트웨어인 RapidMiner를 사용하여, 회귀분석을 통한, 결정요인 분석을 수행하였다. 본 연구결과, 제품에 대한 리뷰어의 평가가 높고, 상품평에 포함된 전체 단어 수가 많으며, 상품평의 내용에 지각적 과정이 많이 포함되어 있는 반면, 부정적 감정은 적게 포함된 상품평들이 두 제품 모두에서 유용하다고 인식되는 것을 알 수 있었다. 그 외, 의류군의 경우, 비교급 표현이 많고, 전문성 지수는 낮으며, 한 문장에 포함된 단어 수가 적은 간결한 상품평이 유용하다고 인식되고 있었으며, 전자제품의 경우, 전문성 지수가 높고, 분석적이며, 진솔한 표현이 많고, 인지적 과정과 긍정적 감정(PosEmo)이 많이 포함된 상품평이 유용하게 인식되고 있었다. 이러한 연구결과는 향후, 소비자들이 효과적으로 유용한 상품평들을 확인하는데 도움이 될 것으로 기대된다.