• Title/Summary/Keyword: Internet Video Coding

Search Result 108, Processing Time 0.031 seconds

Enhanced Image Encryption Scheme using Context Adaptive Variable Length Coding (적응 산술 부호화를 이용한 고화질 영상 암호화 전략)

  • Shim, Gab-Yong;Lee, Malrey
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.119-126
    • /
    • 2013
  • Achieve real-time encryption and video data transcoding, current video encryption methods usually integrate encryption algorithm with video compression course. This paper is devoted to discussing the video encryption technology, by encrypting to avoid unauthorized person getting video data. This paper studied the H.264 entropy coding and proposed of CAVLC video encryption scheme which is combined with the process of entropy coding of H.264 CAVLC encryption scheme. Three encryption levels are proposed. In addition, a scrambling method is also proposed which makes the encrypted frames more robust in anti crack. This method showed more robust video data encryption function and compressive rate.

Efficient scalable method of H.264 video coding for network transport (네트워크 전송을 위한 H.264 비디오의 효율적인 계층화 방법)

  • Hwang, Jeong-Taek;Park, Seung-Ho;Suh, Doug-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.192-194
    • /
    • 2005
  • Acceptance of the international standards for video compression, such as H.261, MPEG-1 and MPEG-2, along with the developments in video codec hardware, has created an explosion of application. Among these, the long time quest for long-distance digital video transmission causes an increasing interest in transporting compressed video over networks which are nontraditional for this purpose, including asynchronous transfer mode networks, the Internet, and cellular and wireless channels. Transmission of compression video over packet network is improved for error resilience. And layered video coding techniques improves error resilience. We present a efficient method of scalable video coding for low bandwidth.

  • PDF

Adaptive Combined Scalable Video Coding over MIMO-OFDM Systems using Partial Channel State Information

  • Rantelobo, Kalvein;Wirawan, Wirawan;Hendrantoro, Gamantyo;Affandi, Achmad;Zhao, Hua-An
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3200-3219
    • /
    • 2013
  • This paper proposes an adaptive combined scalable video coding (CSVC) system for video transmission over MIMO-OFDM (Multiple-Input Multiple-Output-Orthogonal Frequency Division Multiplexing) broadband wireless communication systems. The scalable combination method of CSVC adaptively combines the medium grain scalable (MGS), the coarse grain scalable (CGS) and the scalable spatial modes with the limited feedback partially from channel state information (CSI) of MIMO-OFDM systems. The objective is to improve the average of peak signal-to-noise ratio (PSNR) and bit error rate (BER) of the received video stream by exploiting partial CSI of video sources and channel condition. Experimental results show that the delivered quality using the proposed adaptive CSVC over MIMO-OFDM system performs better than those proposed previously in the literature.

Fast Macroblock Mode Selection Algorithm for B Frames in Multiview Video Coding

  • Yu, Mei;He, Ping;Peng, Zongju;Zhang, Yun;Si, Yuehou;Jiang, Gangyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.2
    • /
    • pp.408-427
    • /
    • 2011
  • Intensive computational complexity is an obstacle of enabling multiview video coding for real-time applications. In this paper, we present a fast macroblock (MB) mode selection algorithm for B frames which are based on the computational complexity analyses between the MB mode selection and reference frame selection. Three strategies are proposed to reduce the coding complexity jointly. First, the temporal correlation of MB modes between current MB and its temporal corresponding MBs is utilized to reduce computational complexity in determining the optimal MB mode. Secondly, Lagrangian cost of SKIP mode is compared with that of Inter $16{\times}16$ modes to early terminate the mode selection process. Thirdly, reference frame correlation among different Inter modes is exploited to reduce the number of reference frames. Experimental results show that the proposed algorithm can promote the encoding speed by 3.71~7.22 times with 0.08dB PSNR degradation and 2.03% bitrate increase on average compared with the joint multiview video model.

Playout Buffer based Rate Adaptation for Scalable Video Streaming over the Internet

  • Kang, Young-Wook;Jung, Young-H.;Choe, Yoon-Sik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.413-417
    • /
    • 2009
  • The use of scalable video coding scheme has been regarded as a promising solution for guaranteeing the quality of service of the video streaming over the Internet because it is a capable coding scheme to perform quality adaptation depending on network conditions. In this paper, we use a streaming model that transmits base layer using TCP and enhancement layers using DCCP, which try to provide transmission reliability of the BL and TCP friendliness. Unlike pervious works, the proposed algorithm performs rate adaptation based on playout buffer status. The PoB status of the client is sent back periodically to the server and serves as a network congestion indicator. Experimental results show that our scheme improves streaming quality comparing with pervious scheme in the case of not only constant/dynamic background flows but also VBR-encoded video sequence.

  • PDF

GOP Adaptation Coding of H.264/SVC Based on Precise Positions of Video Cuts

  • Liu, Yunpeng;Wang, Renfang;Xu, Huixia;Sun, Dechao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2449-2463
    • /
    • 2014
  • Hierarchical B-frame coding was introduced into H.264/SVC to provide temporal scalability and improve coding performance. A content analysis-based adaptive group of picture structure (AGS) can further improve the coding efficiency, but damages the inter-frame correlation and temporal scalability of hierarchical B-frame to different degrees. In this paper, we propose a group of pictures (GOP) adaptation coding method based on the positions of video cuts. First, the cut positions are accurately detected by the combination of motion coherence (MC) and mutual information (MI); then the GOP is adaptively and proportionately set by the analysis of MC in one scene. In addition, we propose a binary tree algorithm to achieve the temporal scalability of any size of GOP. The results for test sequences and real videos show that the proposed method reduces the bit rate by up to about 15%, achieves a performance gain of about 0.28-1.67 dB over a fixed GOP, and has the advantages of better transmission resilience and video summaries.

Fast Algorithm for Intra Prediction of HEVC Using Adaptive Decision Trees

  • Zheng, Xing;Zhao, Yao;Bai, Huihui;Lin, Chunyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3286-3300
    • /
    • 2016
  • High Efficiency Video Coding (HEVC) Standard, as the latest coding standard, introduces satisfying compression structures with respect to its predecessor Advanced Video Coding (H.264/AVC). The new coding standard can offer improved encoding performance compared with H.264/AVC. However, it also leads to enormous computational complexity that makes it considerably difficult to be implemented in real time application. In this paper, based on machine learning, a fast partitioning method is proposed, which can search for the best splitting structures for Intra-Prediction. In view of the video texture characteristics, we choose the entropy of Gray-Scale Difference Statistics (GDS) and the minimum of Sum of Absolute Transformed Difference (SATD) as two important features, which can make a balance between the computation complexity and classification performance. According to the selected features, adaptive decision trees can be built for the Coding Units (CU) with different size by offline training. Furthermore, by this way, the partition of CUs can be resolved as a binary classification problem. Experimental results have shown that the proposed algorithm can save over 34% encoding time on average, with a negligible Bjontegaard Delta (BD)-rate increase.

Fast CU Encoding Schemes Based on Merge Mode and Motion Estimation for HEVC Inter Prediction

  • Wu, Jinfu;Guo, Baolong;Hou, Jie;Yan, Yunyi;Jiang, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1195-1211
    • /
    • 2016
  • The emerging video coding standard High Efficiency Video Coding (HEVC) has shown almost 40% bit-rate reduction over the state-of-the-art Advanced Video Coding (AVC) standard but at about 40% computational complexity overhead. The main reason for HEVC computational complexity is the inter prediction that accounts for 60%-70% of the whole encoding time. In this paper, we propose several fast coding unit (CU) encoding schemes based on the Merge mode and motion estimation information to reduce the computational complexity caused by the HEVC inter prediction. Firstly, an early Merge mode decision method based on motion estimation (EMD) is proposed for each CU size. Then, a Merge mode based early termination method (MET) is developed to determine the CU size at an early stage. To provide a better balance between computational complexity and coding efficiency, several fast CU encoding schemes are surveyed according to the rate-distortion-complexity characteristics of EMD and MET methods as a function of CU sizes. These fast CU encoding schemes can be seamlessly incorporated in the existing control structures of the HEVC encoder without limiting its potential parallelization and hardware acceleration. Experimental results demonstrate that the proposed schemes achieve 19%-46% computational complexity reduction over the HEVC test model reference software, HM 16.4, at a cost of 0.2%-2.4% bit-rate increases under the random access coding configuration. The respective values under the low-delay B coding configuration are 17%-43% and 0.1%-1.2%.

Multi-View Video Coding Using Illumination Change-Adaptive Motion Estimation and 2D Direct Mode (조명변화에 적응적인 움직임 검색 기법과 2차원 다이렉트 모드를 사용한 다시점 비디오 부호화)

  • Lee, Yung Ki;Hur, Jae Ho;Lee, Yung Lyul
    • Journal of Broadcast Engineering
    • /
    • v.10 no.3
    • /
    • pp.321-327
    • /
    • 2005
  • A MVC (Multi-view Video Coding) method, which uses both an illumination change-adaptive ME (Motion Estimation)/DC (Motion Compensation) and a 2D (Dimensional) direct mode, is proposed. Firstly, a new SAD (Sum of Absolute Difference) measure for ME/MC is proposed to compensate the Luma pixel value changes for spatio-temporal motion vector prediction. Illumination change-adaptive (ICA) ME/MC uses the new SAD to improve both MV (Motion Vector) accuracy and bit saving. Secondly, The proposed 2D direct mode that can be used in inter-view prediction is an extended version of the temporal direct mode in MPEG-4 AVC. The proposed MVC method obtains approximately 0.8dB PSNR (Peak Signal-to-Noise Ratio) increment compared with the MPEG-4 AVC simulcast coding.

Parallel Deblocking Filter Based on Modified Order of Accessing the Coding Tree Units for HEVC on Multicore Processor

  • Lei, Haiwei;Liu, Wenyi;Wang, Anhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1684-1699
    • /
    • 2017
  • The deblocking filter (DF) reduces blocking artifacts in encoded video sequences, and thereby significantly improves the subjective and objective quality of videos. Statistics show that the DF accounts for 5-18% of the total decoding time in high-efficiency video coding. Therefore, speeding up the DF will improve codec performance, especially for the decoder. In view of the rapid development of multicore technology, we propose a parallel DF scheme based on a modified order of accessing the coding tree units (CTUs) by analyzing the data dependencies between adjacent CTUs. This enables the DF to run in parallel, providing accelerated performance and more flexibility in the degree of parallelism, as well as finer parallel granularity. We additionally solve the problems of variable privatization and thread synchronization in the parallelization of the DF. Finally, the DF module is parallelized based on the HM16.1 reference software using OpenMP technology. The acceleration performance is experimentally tested under various numbers of cores, and the results show that the proposed scheme is very effective at speeding up the DF.