• Title/Summary/Keyword: Internet Security Simulation

Search Result 219, Processing Time 0.022 seconds

Securing Anonymous Authenticated Announcement Protocol for Group Signature in Internet of Vehicles

  • Amir, Nur Afiqah Suzelan;Malip, Amizah;Othman, Wan Ainun Mior
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4573-4594
    • /
    • 2020
  • Announcement protocol in Internet of Vehicles (IoV) is an intelligent application to enhance public safety, alleviate traffic jams and improve transportation quality. It requires communication between vehicles, roadside units and pedestrian to disseminate safety-related messages. However, as vehicles connected to internet, it makes them accessible globally to a potential adversary. Safety-related application requires a message to be reliable, however it may intrude the privacy of a vehicle. Contrarily, if some misbehaviour emerges, the malicious vehicles must be able to traceable and revoke from the network. This is a contradiction between privacy and accountability since the privacy of a user should be preserved. For a secure communication among intelligent entities, we propose a novel announcement protocol in IoV using group signature. To the best of our knowledge, our work is the first comprehensive construction of an announcement protocol in IoV that deploys group signature. We show that our protocol efficiently solves these conflicting security requirements of message reliability, privacy and accountability using 5G communication channel. The performance analysis and simulation results signify our work achieves performance efficiency in IoV communication.

Review on Energy Efficient Clustering based Routing Protocol

  • Kanu Patel;Hardik Modi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.169-178
    • /
    • 2023
  • Wireless sensor network is wieldy use for IoT application. The sensor node consider as physical device in IoT architecture. This all sensor node are operated with battery so the power consumption is very high during the data communication and low during the sensing the environment. Without proper planning of data communication the network might be dead very early so primary objective of the cluster based routing protocol is to enhance the battery life and run the application for longer time. In this paper we have comprehensive of twenty research paper related with clustering based routing protocol. We have taken basic information, network simulation parameters and performance parameters for the comparison. In particular, we have taken clustering manner, node deployment, scalability, data aggregation, power consumption and implementation cost many more points for the comparison of all 20 protocol. Along with basic information we also consider the network simulation parameters like number of nodes, simulation time, simulator name, initial energy and communication range as well energy consumption, throughput, network lifetime, packet delivery ration, jitter and fault tolerance parameters about the performance parameters. Finally we have summarize the technical aspect and few common parameter must be fulfill or consider for the design energy efficient cluster based routing protocol.

Design and Implementation of Scenario-based Attack Simulator using NS (NS를 이용한 시나리오기반 공격 시뮬레이터 설계 및 구현)

  • Choi, Hyang-Chang;Noh Bong-Nam;Lee Hyung-Hyo
    • Journal of Internet Computing and Services
    • /
    • v.7 no.5
    • /
    • pp.59-69
    • /
    • 2006
  • Generally, network attacks are based on a scenario composed of a series of single-attacks, scenario attacks are launched over a wide network environment and their targets are not apparent. it is required to analyze entire packets captured on the network. This method makes it difficult to detect accurate patterns of attacks because it unnecessarily analyzes even packets unrelated to attacks. In this paper, we design and implement a simulation system for attacks scenario, which helps packet classification connected with attacks. The proposed system constitutes a target network for analysis in a virtual simulation environment, and it simulates dumping TCPDUMP packets including scenario attacks under the constructed virtual environment, We believe that our proposed simulation system will be a useful tool when security administrators perform the analysis of patterns of attack scenarios.

  • PDF

Encryption-based Image Steganography Technique for Secure Medical Image Transmission During the COVID-19 Pandemic

  • Alkhliwi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.83-93
    • /
    • 2021
  • COVID-19 poses a major risk to global health, highlighting the importance of faster and proper diagnosis. To handle the rise in the number of patients and eliminate redundant tests, healthcare information exchange and medical data are transmitted between healthcare centres. Medical data sharing helps speed up patient treatment; consequently, exchanging healthcare data is the requirement of the present era. Since healthcare professionals share data through the internet, security remains a critical challenge, which needs to be addressed. During the COVID-19 pandemic, computed tomography (CT) and X-ray images play a vital part in the diagnosis process, constituting information that needs to be shared among hospitals. Encryption and image steganography techniques can be employed to achieve secure data transmission of COVID-19 images. This study presents a new encryption with the image steganography model for secure data transmission (EIS-SDT) for COVID-19 diagnosis. The EIS-SDT model uses a multilevel discrete wavelet transform for image decomposition and Manta Ray Foraging Optimization algorithm for optimal pixel selection. The EIS-SDT method uses a double logistic chaotic map (DLCM) is employed for secret image encryption. The application of the DLCM-based encryption procedure provides an additional level of security to the image steganography technique. An extensive simulation results analysis ensures the effective performance of the EIS-SDT model and the results are investigated under several evaluation parameters. The outcome indicates that the EIS-SDT model has outperformed the existing methods considerably.

An Implementation Strategy for the Physical Security Threat Meter Using Information Technology (정보통신 기술을 이용한 물리보안 위협 계수기 구현 전략)

  • Kang, Koo-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.47-57
    • /
    • 2014
  • In order to publicly notify the information security (Internet or Cyber) threat level, the security companies have developed the Threat Meters. As the physical security devices are getting more intelligent and can be monitored and managed through networks, we propose a physical security threat meter (PSTM) to determine the current threat level of physical security; that is a very similar compared with the one of information security. For this purpose, we investigate and prioritize the physical security events, and consider the impact of temporal correlation among multiple security events. We also present how to determine the threshold values of threat levels, and then propose a practical PSTM using the threshold based decision. In particular, we show that the proposed scheme is fully implementable through showing the block diagram in detail and the whole implementation processes with the access controller and CCTV+video analyzer system. Finally the simulation results show that the proposed PSTM works perfectly under some test scenarios.

Creating Covert Channel by Harnessing Shapley Values from Smartphone Sensor Data

  • Ho, Jun-Won
    • International journal of advanced smart convergence
    • /
    • v.10 no.3
    • /
    • pp.10-16
    • /
    • 2021
  • In this paper, we devise a Shapley-value-based covert channel in smartphones. More specifically, unlike ordinary use of Shapley value in cooperative game, we make use of a series of Shapley values, which are computed from sensor data collected from smartphones, in order to create a covert channel between encoding smartphone and decoding smartphone. To the best of our knowledge, we are the first to contrive covert channel based on Shapley values. We evaluate the encoding process of our proposed covert channel through simulation and present our evaluation results.

An Efficient Somewhat HE scheme over Integers and Its Variation

  • Yang, Haomiao;Kim, Hyunsung;Tang, Dianhua;Li, Hongwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2497-2513
    • /
    • 2013
  • In 2010, Dijk et al. demonstrated a simple somewhat homomorphic encryption (HE) scheme over the integers of which this simplicity came at the cost of a public key size in $\tilde{O}({\lambda}^{10})$. Although in 2011 Coron et al. reduced the public key size to $\tilde{O}({\lambda}^7)$, it is still too large for practical applications, especially for the cloud computing. In this paper, we propose a new form of somewhat HE scheme to reduce further the public key size and a variation of the scheme to optimize the ciphertext size. First of all, we propose a new somewhat HE scheme which is built on the hardness of the approximate greatest common divisor (GCD) problem of two integers, where the public key size in the scheme is reduced to $\tilde{O}({\lambda}^3)$. Furthermore, we can reduce the length of the ciphertext of the new somewhat HE scheme by applying the modular reduction technique. Additionally, we give simulation results for evaluating ability of the proposed scheme.

Design of Hybrid Network Probe Intrusion Detector using FCM

  • Kim, Chang-Su;Lee, Se-Yul
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • The advanced computer network and Internet technology enables connectivity of computers through an open network environment. Despite the growing numbers of security threats to networks, most intrusion detection identifies security attacks mainly by detecting misuse using a set of rules based on past hacking patterns. This pattern matching has a high rate of false positives and can not detect new hacking patterns, making it vulnerable to previously unidentified attack patterns and variations in attack and increasing false negatives. Intrusion detection and prevention technologies are thus required. We proposed a network based hybrid Probe Intrusion Detection model using Fuzzy cognitive maps (PIDuF) that detects intrusion by DoS (DDoS and PDoS) attack detection using packet analysis. A DoS attack typically appears as a probe and SYN flooding attack. SYN flooding using FCM model captures and analyzes packet information to detect SYN flooding attacks. Using the result of decision module analysis, which used FCM, the decision module measures the degree of danger of the DoS and trains the response module to deal with attacks. For the performance evaluation, the "IDS Evaluation Data Set" created by MIT was used. From the simulation we obtained the max-average true positive rate of 97.064% and the max-average false negative rate of 2.936%. The true positive error rate of the PIDuF is similar to that of Bernhard's true positive error rate.

An Anomaly Detection Method for the Security of VANETs (VANETs의 보안을 위한 비정상 행위 탐지 방법)

  • Oh, Sun-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.77-83
    • /
    • 2010
  • Vehicular Ad Hoc Networks are self-organizing Peer-to-Peer networks that typically have highly mobile vehicle nodes, moving at high speeds, very short-lasting and unstable communication links. VANETs are formed without fixed infrastructure, central administration, and dedicated routing equipment, and network nodes are mobile, joining and leaving the network over time. So, VANET-security is very vulnerable for the intrusion of malicious and misbehaving nodes in the network, since VANETs are mostly open networks, allowing everyone connect, without centralized control. In this paper, we propose a rough set based anomaly detection method that efficiently identify malicious behavior of vehicle node activities in these VANETs, and the performance of a proposed scheme is evaluated by a simulation in terms of anomaly detection rate and false alarm rate for the threshold ${\epsilon}$.

ATCS: An Adaptive TCP Coding Scheme for Satellite IP Networks

  • Dong, Wei;Wang, Junfeng;Huang, Minhuan;Tang, Jian;Zhou, Hongxia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.5
    • /
    • pp.1013-1027
    • /
    • 2011
  • In this paper we propose ATCS, a practical TCP protocol coding scheme based on network coding for satellite IP networks. The proposal is specially designed to enhance TCP performance over satellite networks. In our scheme, the source introduces a degree of redundancy and transmits a random linear combination of TCP packets. Since the redundant packets are utilized to mask packet loss over satellite links, the degree of redundancy is determined by the link error rates. Through a simple and effective method, ATCS estimates link error rates in real time and then dynamically adjusts the redundant factor. Consequently, ATCS is adaptable to a wide range of link error rates by coding TCP segments with a flexible redundancy factor. Furthermore, the scheme is compatible with traditional TCP variants. Simulation results indicate that the proposal improves TCP performance considerably.