• Title/Summary/Keyword: Internet QoS

Search Result 787, Processing Time 0.024 seconds

A study on improvement of ISO/IEC 29157 MAC protocol (ISO/IEC 29157 표준 MAC 프로토콜 개선 연구)

  • Cha, Bong-Sang;Jeong, Eui-Hoon;Jeon, Gwangil;Seo, Dae-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.17-26
    • /
    • 2013
  • ISO/IEC 29157 originally developed in the Republic of Korea and is based on commercially available PicoCast v1.0. ISO/IEC JTC1 SC6 was registered by the international standard on May 2010. A single platform for a variety of applications and media formats to support development objectives were. ISO/IEC 29157 based wireless networks, ie, Pico-net to master node periodically transmit sync signal is synchronized to the number of slave nodes have the communications structure. Pico-net also supports a variety of network topologies and direct communication between nodes(single-hop communication) and QoS is guaranteed. But Pico-net network structure has the following problems. Loss of communication problems due to mobile nodes, resulting in limitations of node mobility and wireless network operation range of conventional wireless networks operating range less than 1/4 was reduced to the problem. In this paper, a possible solution to the problems mentioned is proposed, using multi-hop communication technology and sync signal transmission technology between nodes.

Analysis of IEEE 802.11n System adapting SVD-MIMO Method based on Ns(Network simulator)-2 (Ns-2 기반의 SVD-MIMO 방식을 적용한 IEEE 802.11n 시스템 분석)

  • Lee, Yun-Ho;Kim, Joo-Seok;Choi, Jin-Kyu;Kim, Kyung-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.8
    • /
    • pp.1109-1119
    • /
    • 2009
  • WLAN(Wireless Local Area Network) standard is currently developing with increased wireless internet demand. Though existing IEEE 802.11e demonstrates that data rates exceed 54Mbps with assuring QoS(Quality of Service), wireless internet users can't be satisfied with real communication system. After IEEE 802.11e system, Study trends of IEEE 802.11n show two aspects, enhanced system throughput using aggregation among packets in MAC (Medium Access Control) layer, and better data rates adapting MIMO(Multiple-Input Multiple-Output) in PHY(Physical) layer. But, no one demonstrates IEEE 802.11n system performance results considering MAC and PHY connection. Therefore, this paper adapts MIMO in PHY layer for IEEE 802.11n system based on A-MPDU(Aggregation-MAC Protocol Data Unit) method in MAC layer considering MAC and PHY connection. SVD(Singular Value Decomposition) method with WLAN MIMO TGn Channel is used to analyze MIMO. Consequently, Simulation results show enhanced throughput and data rates compared to existing system. Also, We use Ns-2(Network Simulator-2) considering MAC and PHY connection for reality.

  • PDF

Active VM Consolidation for Cloud Data Centers under Energy Saving Approach

  • Saxena, Shailesh;Khan, Mohammad Zubair;Singh, Ravendra;Noorwali, Abdulfattah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.345-353
    • /
    • 2021
  • Cloud computing represent a new era of computing that's forms through the combination of service-oriented architecture (SOA), Internet and grid computing with virtualization technology. Virtualization is a concept through which every cloud is enable to provide on-demand services to the users. Most IT service provider adopt cloud based services for their users to meet the high demand of computation, as it is most flexible, reliable and scalable technology. Energy based performance tradeoff become the main challenge in cloud computing, as its acceptance and popularity increases day by day. Cloud data centers required a huge amount of power supply to the virtualization of servers for maintain on- demand high computing. High power demand increase the energy cost of service providers as well as it also harm the environment through the emission of CO2. An optimization of cloud computing based on energy-performance tradeoff is required to obtain the balance between energy saving and QoS (quality of services) policies of cloud. A study about power usage of resources in cloud data centers based on workload assign to them, says that an idle server consume near about 50% of its peak utilization power [1]. Therefore, more number of underutilized servers in any cloud data center is responsible to reduce the energy performance tradeoff. To handle this issue, a lots of research proposed as energy efficient algorithms for minimize the consumption of energy and also maintain the SLA (service level agreement) at a satisfactory level. VM (virtual machine) consolidation is one such technique that ensured about the balance of energy based SLA. In the scope of this paper, we explore reinforcement with fuzzy logic (RFL) for VM consolidation to achieve energy based SLA. In this proposed RFL based active VM consolidation, the primary objective is to manage physical server (PS) nodes in order to avoid over-utilized and under-utilized, and to optimize the placement of VMs. A dynamic threshold (based on RFL) is proposed for over-utilized PS detection. For over-utilized PS, a VM selection policy based on fuzzy logic is proposed, which selects VM for migration to maintain the balance of SLA. Additionally, it incorporate VM placement policy through categorization of non-overutilized servers as- balanced, under-utilized and critical. CloudSim toolkit is used to simulate the proposed work on real-world work load traces of CoMon Project define by PlanetLab. Simulation results shows that the proposed policies is most energy efficient compared to others in terms of reduction in both electricity usage and SLA violation.

Improvement of F-GCRA Algorithm for ATM-GFR Service (ATM-GFR 서비스를 위한 F-GCRA 알고리즘 개선)

  • Park, In-Yong
    • The KIPS Transactions:PartC
    • /
    • v.13C no.7 s.110
    • /
    • pp.889-896
    • /
    • 2006
  • ATM Forum has defined a guaranteed frame rate (GFR) service to serve Internet traffic efficiently. The GFR service provides virtual connections (VCs) for minimum cell rate (MCR) guarantees and allows them to fairly share the residual bandwidth. And ATM Forum has recommended a frame-based generic cell rate algorithm (F-GCRA) as a frame classifier, which determines whether an Am cell is eligible to use the guaranteed bandwidth in a frame level. An ATM switch accommodates cells in its buffer or drops them in a frame level according to current buffer occupancy. A FIFO shared buffer has so simple structure as to be feasibly implemented in switches, but has not been able to provide an MCR guarantee for each VC without buffer management based on per-VC accounting. In this paper, we enhance the F-GCRA frame classifier to guarantee an MCR of each VC without buffer management based on per-VC accounting. The enhanced frame classifier considers burstness of TCP traffic caused by congestion control algorithm so as to enable each VC to use its reserved bandwidth sufficiently. In addition, it is able to alleviate the unfairness problem in usage of the residual bandwidth. Simulation results show that the enhanced frame classifier satisfies quality of services (QoSs) of the GFR service for the TCP traffic.

An AP Selection Scheme for Enhancement of Multimedia Streaming in Wireless Network Environments (무선 네트워크 환경에서 멀티미디어 서비스를 위한 AP 선정 기법)

  • Ryu, Dong-Woo;Wang, Wei-Bin;Kang, Kyung-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.997-1005
    • /
    • 2010
  • Recently, there has been a growing interest in the use of WLAN technology due to its easy deployment, flexibility and so on. Examples of WLAN applications range from standard internet services such as Web access to real-time services with strict latency/throughput requirements such as multimedia video and voice over IP on wireless network environments. Fair and efficient distribution of the traffic loads among APs(Access Points) has become an important issue for improved utilization of WLAN. This paper focuses on an AP selection scheme for achieving better load balance, and hence increasing network resource utilization for each user on wireless network environments. This scheme makes use of active scan patterns and the network delay as main parameters of load measurement and AP selection. This scheme attempts to estimate the AP traffic loads by observing the up/down delay and utilize the results to maximize the link resource efficiency through load balancing. We compared the proposed scheme with the original SNR(Signal to Noise Ratio)-based scheme using the NS-2(Network Simulation.2). We found that the proposed scheme improves the throughput by 12.5% and lower the network up/down link delay by 36.84% and 60.42%, respectively. All in all, the new scheme can significantly increase overall network throughput and reduce up/down delay while providing excellent quality for voice and video services.

An Algorithm to Detect P2P Heavy Traffic based on Flow Transport Characteristics (플로우 전달 특성 기반의 P2P 헤비 트래픽 검출 알고리즘)

  • Choi, Byeong-Geol;Lee, Si-Young;Seo, Yeong-Il;Yu, Zhibin;Jun, Jae-Hyun;Kim, Sung-Ho
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.5
    • /
    • pp.317-326
    • /
    • 2010
  • Nowadays, transmission bandwidth for network traffic is increasing and the type is varied such as peer-to-peer (PZP), real-time video, and so on, because distributed computing environment is spread and various network-based applications are developed. However, as PZP traffic occupies much volume among Internet backbone traffics, transmission bandwidth and quality of service(QoS) of other network applications such as web, ftp, and real-time video cannot be guaranteed. In previous research, the port-based technique which checks well-known port number and the Deep Packet Inspection(DPI) technique which checks the payload of packets were suggested for solving the problem of the P2P traffics, however there were difficulties to apply those methods to detection of P2P traffics because P2P applications are not used well-known port number and payload of packets may be encrypted. A proposed algorithm for identifying P2P heavy traffics based on flow transport parameters and behavioral characteristics can solve the problem of the port-based technique and the DPI technique. The focus of this paper is to identify P2P heavy traffic flows rather than all P2P traffics. P2P traffics are consist of two steps i)searching the opposite peer which have some contents ii) downloading the contents from one or more peers. We define P2P flow patterns on these P2P applications' features and then implement the system to classify P2P heavy traffics.

Reliable Hybrid Multicast using Multi-layer Transmission Path (다계층 전송경로를 이용한 신뢰성 있는 하이브리드 멀티캐스트)

  • Gu, Myeong-Mo;Kim, Bong-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.35-40
    • /
    • 2019
  • It is important to constantly provide service in real-time multimedia applications using multicast. Transmission path reconstruction occurs in hybrid multicast using Internet Protocol (IP) multicast and ALM in order to adapt the network status to things like congestion. So, there is a problem in which real-time QoS is reduced, caused by an increase in end-to-end delay. In this paper, we want to solve this problem through multi-layer transmission path construction. In the proposed method, we deploy the control server and application layer overlay host (ALOH) in each multicast domain (MD) for hybrid multicast construction. After the control server receives the control information from an ALOH that joins the MD, it makes a group based on the hop count and sends it to the ALOH in each MD. The ALOH in the MD performs the role of sending the packet to another ALOH and constructs the multi-layered transmission path in order of priority by using control information that is received from the control server and based on the delay between neighboring ALOHs. When congestion occurs in, or is absent from, the ALOH in the upper MD, the ALOH selects the path with the highest priority in order to reduce end-to-end delay. Simulation results show that the proposed method could reduce the end-to-end delay to less than 289 ms, on average, under congestion status.