• Title/Summary/Keyword: International Space Station

Search Result 132, Processing Time 0.022 seconds

초고에너지 우주선 관측을 위한 JEM-EUSO 프로젝트의 진행 현황

  • Im, Hui-Jin;Kim, Seok-Hwan;Kim, Sun-Uk;Park, Il-Heung;Yang, Jong-Man;Lee, Jik;Jeong, Ae-Ra
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.222.1-222.1
    • /
    • 2012
  • JEM-EUSO (Extreme Universe Space Observatory on-board the Japanese Experiment Module)는 국제우주정거장(International Space Station)의 일본 실험 모듈인 'KIBO'에 우주 망원경을 설치하여, 100 EeV이상의 초고에너지 우주선 관측을 수행함으로써, 초고에너지의 스펙트럼, 구성성분과 기원을 연구하는 국제공동연구 프로젝트이다. 구경 2.5 m로 60도의 광시야각을 가지는 대형 굴절 망원경을 통해서, 지구 대기에 우주선 shower로부터 발생한 형광 신호를 관측하려고 한다. 이 프로젝트는 2016~2017년에 발사되어, 5년 이상의 임무 수행을 목표로 하고 있으며, 그 전단계로 Prototype 시스템을 가지고 지상실험인 EUSO-TA와 고도 40 km에서 수행할 EUSO-Balloon실험을 준비하고 있다. 먼저, 망원경의 prototype을 2012년 12월쯤 미국 유타에 있는 Telescope Array(TA) 실험에 설치하여 우주선 또는 임의로 인가한 광원에 의해서 생성된 shower를 TA의 Fluorescence Detector와 함께 측정하여, 시스템 calibration과 더불어 지상에 검출된 우주선을 연구할 계획이다. 그 이듬해인 2013년 여름에는 Balloon에 망원경의 Engineering model을 실어서, 대기고도 40 km아래에서 우주선에 의해 생성되는 shower를 개발한 트리거 시스템을 통해서 검출하고, 대기권에 존재하는 UV background 광원들을 측정하여 우주선을 연구할 예정이다. 한국 그룹은 JEM-EUSO을 위해서 개발한 디지털 신호처리 및 트리거 장치의 제작 중에 있으며, 위의 실험들을 위해 망원경과 함께 조립하여 테스트를 수행할 계획이다.

  • PDF

PRECISE OR81T DETERMINATION OF GPS-36 SATELLITE USING SATELLITE LASER RANGING (SLR을 이용한 GPS-36 위성의 정밀 궤도 결정)

  • 임형철;박관동;박필호;박종욱;조정호
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.385-394
    • /
    • 2002
  • Satellite laser ranging is a technique for precisely measuring the range between a laser station and a satellite that is equipped with retro-reflectors. SLR technique was first used for Beacon-B satellite in 1964 with the ranging accuracy of meter level. Now the single shot have centimeter level accuracy and the normal point have mm level in ranging. In this study we developed the algorithm for precise orbit determination using SLR data and performed the orbit determination of GPS-36 satellite using the algorithm. RMS of the estimated orbit was 74cm when compared with IGS precise orbit. It is known that RMS of SLR measurement residual is below 55mm. But we were able to achieve 44mm RMS of residual throughout this study.

Trajectory analysis of a CubeSat mission for the inspection of an orbiting vehicle

  • Corpino, Sabrina;Stesina, Fabrizio;Calvi, Daniele;Guerra, Luca
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.3
    • /
    • pp.271-290
    • /
    • 2020
  • The paper describes the analysis of deployment strategies and trajectories design suitable for executing the inspection of an operative spacecraft in orbit through re-usable CubeSats. Similar missions have been though indeed, and one mission recently flew from the International Space Station. However, it is important to underline that the inspection of an operative spacecraft in orbit features some peculiar characteristics which have not been demonstrated by any mission flown to date. The most critical aspects of the CubeSat inspection mission stem from safety issues and technology availability in the following areas: trajectory design and motion control of the inspector relative to the target, communications architecture, deployment and retrieval of the inspector, and observation needs. The objectives of the present study are 1) the identification of requirements applicable to the deployment of a nanosatellite from the mother-craft, which is also the subject of the inspection, and 2) the identification of solutions for the trajectories to be flown along the mission phases. The mission for the in-situ observation of Space Rider is proposed as reference case, but the conclusions are applicable to other targets such as the ISS, and they might also be useful for missions targeted at debris inspection.

Validation of GNSS TEC from NMSC GNSS Processing System

  • Lee, Jeong-Deok;Oh, Seung-Jun;Kil, Hyo-Sub;Shin, Dae-Yun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.101.1-101.1
    • /
    • 2011
  • National Meteorological Satellite Center(NMSC) of Korea Meteorological Administration(KMA) is collecting GNSS data in near-real time for about 80 GNSS stations operated by multiple agencies. (eg. National Geographic Information Institute (NGII), Korea Astronomy and Space Science Institute (KASI), DGNSS Central Office) Using these GNSS data, NMSC developed automatic Total Electron Contents(TEC) derivation system over the Korean peninsular every 1-hour based on single station data processing. We present the TEC result and validation of TEC using International GNSS Service(IGS) global TEC data for the case of quiet time and storm time. The future plans for the system improvement will be discussed.

  • PDF

Launch Preparation and Launch-and-Early-Operations-Phase for COMS Propulsion System (천리안위성 추진계 발사 준비와 발사 및 초기운용)

  • Han, Cho-Young;Chae, Jong-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.207-210
    • /
    • 2011
  • Chollian bipropellant propulsion system is composed of one main engine for orbit transfer and fourteen thrusters for on-station operations. The design and analyses of the propulsion system were carried out in the framework of international collaboration. Following the system integration and testings required, the Chollian was transported to Kourou Space Center in French Guiana and launched successfully. After it separated from the launcher, the propulsion system was initialised automatically. Then three times of main engine firing were successfully performed, and the target obit insertion was accomplished.

  • PDF

Construction of Ionospheric TEC Retrieval System Using Korean GNSS Network (국내 GNSS 관측 자료를 이용한 전리권 총전자밀도 산출 시스템 구축)

  • Lee, Jeong-Deok;Shin, Daeyun;Kim, Dohyeong;Oh, Seung Jun
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.30-34
    • /
    • 2012
  • National Meteorological Satellite Center(NMSC) of Korea Meteorological Administration(KMA) has launched to implement the application development to get prepared for the space weather operation since 2010. As a action of KMA's space weather work, NMSC constructed Global Navigation Satellite System(GNSS) application system for meteorology and space weather. We will introduce NMSC's space weather application system which derives regional TEC(Total Electron Content) in near real time using nation-wide GNSS network data. First, We constructed system for collecting GNSS data, which is currently collecting about 80 stations operated by agencies like NGII(National Geographic Information Institute), Central Office of DGPS(Differential GPS), and KASI(Korea Astronomy and Space Science) including KMA's own data of 2 stations. In order to retreive regional TEC over Korean peninsular, we build up the automatic processes running every 1-hour. In these processes, firstly, GNSS data of every stations with 24 hours time window are processed to derive DCBs(Differential Code Biases) of each GNSS station and TEC values on every ionosphere piercing point(IPP). Then we made gridded regional TEC map with resolution of 0.25 degree from 31N, 121E to 41N, 135E by combination of all station results within 30 minutes window with assumption that TEC of a given point during a given 30 minutes window would have a constant value. The grid points without TEC value are interpolated using Barnes objective analysis. We presentour regional TEC maps, which can describe better on the status of ionosphere over Korean peninsular compared to IGS TEC maps.

Analysis on Mission Lifetime and Collision Avoidance of Cubesat Launched from ISS (ISS에서 발사되는 큐브위성의 임무수명 및 충돌회피 분석)

  • Yeom, Seung-Yong;Kim, Hongrae;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.413-421
    • /
    • 2015
  • Since the first Cubesat was launched in 2003, there have been more than 230 Cubesats launched so far. Due to their small size and lightweight, Cubesats were launched by utilizing the empty space of regular launch vehicle. However, this launch method has a weakness that has been easily affecting by the schedule of major payloads. As a new solution to this problem, it has been proposed that a robot arm installed on ISS would be used to launch Cubesats. The orbits of Cubesat deployed from the ISS in various angles and directions are analyzed in this paper. We also analyze the possibility of collision between the Cubesat and ISS within the operational orbit of the CubeSat and eventually calculate the optimal angle of a robot arm, which maximizes the lifetime of Cubesat and minimizes the risk of collision between the Cubesat and ISS.

Comparison of Global Optimization Methods for Insertion Maneuver into Earth-Moon L2 Quasi-Halo Orbit Considering Collision Avoidance

  • Lee, Sang-Cherl;Kim, Hae-Dong;Yang, Do-Chul;Cho, Dong-Hyun;Im, Jeong-Heum;No, Tae-Soo;Kim, Seungkeun;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.267-280
    • /
    • 2014
  • A spacecraft placed in an Earth-Moon L2 quasi-halo orbit can maintain constant communication between the Earth and the far side of the Moon. This quasi-halo orbit could be used to establish a lunar space station and serve as a gateway to explore the solar system. For a mission in an Earth-Moon L2 quasi-halo orbit, a spacecraft would have to be transferred from the Earth to the vicinity of the Earth-Moon L2 point, then inserted into the Earth-Moon L2 quasi-halo orbit. Unlike the near Earth case, this orbit is essentially very unstable due to mutually perturbing gravitational attractions by the Earth, the Moon and the Sun. In this paper, an insertion maneuver of a spacecraft into an Earth-Moon L2 quasi-halo orbit was investigated using the global optimization algorithm, including simulated annealing, genetic algorithm and pattern search method with collision avoidance taken into consideration. The result shows that the spacecraft can maintain its own position in the Earth-Moon L2 quasi-halo orbit and avoid collisions with threatening objects.

An Empirical Analysis on Public Transportation Demand and TOD Design Factors in Seoul subway adjacent area (서울시 역세권의 TOD환경과 대중교통이용수요 관계분석)

  • Moon, Young-Il;Rho, Jeong-Hyun
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.211-220
    • /
    • 2011
  • TOD(Transit Oriented Development) has recently been active, which presents that TOD planning elements should be comprehensively taken into consideration in order to enhance domestic transit ridership by changing environments in rail station areas and an empirical analysis on the type of rail station areas and transportation demand should be a prerequisite for usage of future development planning. This study aims to grasp a variety of TOD of influence factors in Seoul rail station area and to perform analysis to identify relationship between public transportation demand and these TOD design factors. To make it come true, we gathered data with respect to Density, Diversity, and Accessibility as representative TOD planning elements and carried out factorial and regression analysis. Consequently, we drew 7 influence factors base on factorial analysis: Factor 1(Diversity/ -Use Mix(LUM)), Factor 2(Density/development density), Factor 3(Accessibility/public transportation facility supply), Factor 4(Design/street design), Factor 5(Green/access mode (pedestrian, bike), Factor 6(Design/subway size), Factor 7(Accessibility/Public transit operation) As the result of model development by using factorial and regression analysis, positive influence factors on passenger flow in rail station area are Factor 1(Diversity : Land-Use Mix), Factor 3(Accessibility : public transportation facility supply), Factor 2(Density : development density), Factor 5(Design/ access mode) and Factor 6(subway size) Next, negative influence factor on passenger flow in rail station area shows Factor 7(Accessibility/Public transit operation) as the most influential factor. This is because the growth of service interval of linked subway and bus leads to reduced demand.

Radiation Exposure of an Astronaut subject to Various Space Radiation Environments and Shielding Conditions (다양한 우주방사선 환경과 차폐 조건에서 우주인이 받는 방사선 피폭량)

  • Chae, Myeong-Seon;Chung, Bum-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.1038-1048
    • /
    • 2010
  • Radiation exposures of an astronaut during the space travels to the International Space Station(ISS) of the Soyuz and the Moon of the Apollo, were calculated considering the altitude, boarding time, period of stay, kinds of spaceships and space suits. The calculated radiation exposures decrease dramatically according to the thickness of the shielding by the wall of the spaceships and by the space suits. For the space travel to the ISS of Soyuz at Low Earth orbit, the thickness of the spaceship required to optimally reduce the radiation exposure is 3 cm. For the Extravehicle Mobility Unit(EMU) the exposures are minimized at 4 cm of the aluminized Mylar and 5 cm of the Demron, respectively. The aluminized Mylar showed better radiation shielding than the Demron which contains the high Z materials. The radiation exposures of an astronaut were $4.2\times10^{-6}$ Sv for the ISS travel and $4.3\times10^{-5}$ Sv for the Moon explore. The high concentration of the high energy proton flux at the surface of the Moon results in high radiation exposure. The calculation scheme and results of this study can be used in the design of the shielding performance of a spaceship and space suits.