• Title/Summary/Keyword: International Building Code

Search Result 113, Processing Time 0.022 seconds

A Multiple Database-Enabled Design Module with Embedded Features of International Codes and Standards

  • Kwon, Dae Kun;Kareem, Ahsan
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.3
    • /
    • pp.257-269
    • /
    • 2013
  • This study presents the development of an advanced multiple database-enabled design module for high-rise buildings (DEDM-HR), which seamlessly pools databases of multiple high frequency base balance measurements from geographically dispersed locations and merges them together to expand the number of available building configurations for the preliminary design. This feature offers a new direction for the research and professional communities that can be utilized to efficiently pool multiple databases therefore expanding the capability of an individual database and improving the reliability of design estimates. This is demonstrated, in this study, by the unprecedented fusion of two major established databases, which facilitates interoperability. The DEDM-HR employs a cyberbased on-line framework designed with user-friendly/intuitive web interfaces for the convenient estimation of wind-induced responses in the alongwind, acrosswind and torsional directions with minimal user input. In addition, the DEDM-HR embeds a novel feature that allows the use of wind characteristics defined in a code/standard to be used in conjunction with the database. This supplements the provisions of a specific code/standard as in many cases guidance on the acrosswind and torsional response estimates is lacking. Through an example, results from several international codes and standards and the DEDM-HR with the embedded features are compared. This provision enhances the scope of the DEDM-HR in providing an alternative design tool with nested general provisions of various international codes and standards.

Optimization for Configuration and Material Cost of Helical Pile Using Harmony Search Algorithm (하모니서치 알고리즘을 이용한 헬리컬 파일의 형상 및 재료비 최적 설계기법에 대한 연구)

  • Na, Kyunguk;Lee, Dongseop;Lee, Hyungi;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.377-386
    • /
    • 2015
  • The helical pile is a manufactured steel pile consisting of one or more helix-shaped bearing plates affixed to a central shaft. This pile is installed by rotating the shaft into the ground to support structural loads. Advantages of the helical pile are no need for boring or grout process, and ability to install a pile foundation with relatively light devices. In this study, an optimized design method for helical piles is proposed to minimize the material cost with consideration of the load bearing capacity obtained by the cylindrical shear method. The harmony search meta-heuristic algorithm was adopted for optimization process. The optimized design was verified by comparing with the 2009 International building code. It is noted that the optimization for the configuration of helical piles along with material cost proves to be an out-performed tool in designing helical pile foundation with economic feasibility.

Seismic vulnerability evaluation of a 32-story reinforced concrete building

  • Memari, A.M.;Motlagh, A.R. Yazdani;Akhtari, M.;Scanlon, A.;Ashtiany, M. Ghafory
    • Structural Engineering and Mechanics
    • /
    • v.7 no.1
    • /
    • pp.1-18
    • /
    • 1999
  • Seismic evaluation of a 32-story reinforced concrete framed tube building is performed by checking damageability, safety, and toughness limit states. The evaluation is based on Standard 2800 (Iranian seismic code) which recommends equivalent lateral static force, modal superposition, or time history dynamic analysis methods to be applied. A three dimensional linearly elastic model checked by ambient vibration test results is used for the evaluation. Accelerograms of three earthquakes as well as linearly elastic design response spectra are used for dynamic analysis. Damageability is checked by considering story drift ratios. Safety is evaluated by comparing demands and capacities at the story and element force levels. Finally, toughness is studied in terms of curvature ductility of members. The paper explains the methodology selected and various aspects in detail.

Investigation on Seismic Design Component and Load for Nonstructural Element (건축 비구조재의 내진설계요소 및 내진설계하중에 관한 고찰)

  • Choi, Insub;Lee, Joo-Hee;Sohn, Jung-Hoon;Kim, JunHee
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.5
    • /
    • pp.117-124
    • /
    • 2019
  • Nonstructural elements are installed according to the function of a building, and refer to the elements other than a structural system that resists external loads. Although the nonstructural elements had the largest part of seismic loss of buildings, seismic design of buildings mainly focuses on structural system and the seismic design of nonstructural elements are rarely conducted. In this study, the seismic design provisions of nonstructural elements presented in Uniform Building Code (UBC) and International Building Code (IBC) were investigated in order to analyze the seismic design considerations of nonstructural elements presented in Korean Building Code (KBC). The results showed that the equivalent static load applied to seismic design of nonstructural elements was revised to take into consideration a total of five items such as effective ground acceleration, vertical amplification factor, response amplification factor, response modification factor, importance factor.

The Chinese Performance-based Code for Fire-resistance of Steel Structures

  • Li, Guo-Qiang;Zhang, Chao
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • In the past two decades, researchers from different countries have conducted series of experimental and theoretical studies to investigate the behaviour of structures in fire. Many new insights, data and calculation methods have been reported, which form the basis for modern interdisciplinary structural fire engineering. Some of those methods are now adopted in quantitative performance-based codes and have been migrated into practice. Mainly based on the achievements in structural fire research at China, the Chinese national code for fire safety of steel structures in buildings has been drafted and approved, and will be released in this year. The code is developed to prevent steel structures subjected to fire from collapsing, ensure safe evacuation of building occupants, and reduce the cost for repairing the damages of the structure caused by fire. This paper presents the main contents of the code, which includes the fire duration requirements of structural components, fundamental requirements on fire safety design of steel components, temperature increasing of atmosphere and structural components in fire, loading effect and capacity of various components in fire, and procedure for fire-resistant check and design of steel components. The analytical approaches employed in the code and their validation works are also presented.

Challenge in the Structural Design of Suzhou IFS

  • Zhou, Jianlong;Huang, Yongqiang
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.3
    • /
    • pp.165-171
    • /
    • 2021
  • Core-outrigger-mega frame system is used in Suzhou IFS with 95-story, 450 m-tall, which is beyond Chinese code limit. Besides simple introduction on design principle, structure system and analysis, key techniques including performance based design criteria, frame shear ratio, capacity check of mega column, human comfort criteria under wind induced vibration and TSD design were presented in details for reference of similar super tall building design.

A Comparison of the Design Loads of a Water Supply System (급수배관에서의 순간최대 급수량의 산정에 대한 비교 연구)

  • Lee, Yong-Hwa
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.1
    • /
    • pp.38-41
    • /
    • 2014
  • Fixture units and the diversity curve are used, in order to determine the required size of water supply pipe. However, the values of the National Plumbing Code, International Plumbing Code and National Standard Plumbing Code of America are not the same. The objective of this study is to comparatively analyze the fixture units and the peak flows of a 10th story office building, at any instant of time, according to the three codes.

Large-scale Seismic Response Analysis of Super-high-rise Steel Building Considering Soil-structure Interaction using K computer

  • Miyamura, Tomoshi;Akiba, Hiroshi;Hori, Muneo
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.75-83
    • /
    • 2015
  • In the present study, the preliminary results of a large-scale seismic response analysis of a super-high-rise steel frame considering soil-structure interaction are presented. A seismic response analysis under the excitation of the JR Takatori record of the 1995 Hyogoken-Nanbu earthquake is conducted. Precise meshes of a 31-story super-high-rise steel frame and a soil region, which are constructed completely of hexahedral elements, are generated and combined. The parallel large-scale simulation is performed using K computer, which is one of the fastest supercomputers in the world. The results are visualized using an offline rendering code implemented on K computer, and the feasibility of using a very fine mesh of solid elements is investigated. The computation performance of the analysis code on K computer is also presented.

Outrigger System Design Considerations

  • Choi, Hi Sun;Joseph, Leonard
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.237-246
    • /
    • 2012
  • Outrigger systems have been widely used in super tall buildings constructed since the 1980's, eclipsing previously favored tubular frame systems. However, outriggers are not listed as a seismic lateral load resisting system in any code. Design guidelines are not available. The CTBUH formed the Outrigger Working Group to develop the first-ever outrigger system design guide with an historical overview, considerations for outrigger application, effects on building behavior and design recommendations including concerns specific to this structural system such as differential column shortening and construction sequence impacts. Project examples are presented for various outrigger system types, including advancements in their technology. The guide provides a basis for future discussions on this important topic.

Seismic force evaluation of RC shear wall buildings as per international codes

  • Jayalekshmi, B.R.;Chinmayi, H.K.
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.191-209
    • /
    • 2016
  • Seismic codes are the best available guidance on how structures should be designed and constructed to ensure adequate resistance to seismic forces during earthquakes. Seismic provisions of Indian standard code, International building code and European code are applied for buildings with ordinary moment resisting frames and reinforced shear walls at various locations considering the effect of site soil conditions. The study investigates the differences in spectral acceleration coefficient ($S_a/g$), base shear and storey shear obtained following the seismic provisions in different codes in the analysis of these buildings. Study shows that the provision of shear walls at core in low rise buildings and at all the four corners in high rise buildings gives the least value of base shear.