• Title/Summary/Keyword: International Astronomy

Search Result 265, Processing Time 0.022 seconds

ISM Properties and Star Formation Activities in IC 10 : 2D Cross Correlation Analysis of Multi-wavelength data

  • Kim, Seongjoong;Lee, Bumhyun;Oh, Se-Heon;Chung, Aeree;Rey, Soo-Chang;Jung, Teahyun;Kang, Miju
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.31.3-32
    • /
    • 2015
  • We present the physical properties of star forming regions in IC 10 obtained from Korea VLBI Network (KVN) 22GHz, the Submillimeter Array (SMA) CO, Very Large Array (VLA) HI 21cm, optical (U, B, V and H-alpha), and Spitzer infrared observations. IC 10 is a nearby (~0.7Mpc) irregular blue compact dwarf (BCD) galaxy which is likely to be experiencing an intense and recent burst of star formation. This nearby infant system showing high star formation rate but low metallicity (<20% of that of the Sun) provides critical environment of interstellar medium (ISM) under which current galactic star formation models are challenged. To make quantitative analysis of the ISM in the galaxy, we apply 2D cross-correlation technique to the multi-wavelength data for the first time. By cross-correlating different tracers of star formation, dust and gas phases in IC 10 in a two dimensional way, we discuss the gas properties and star formation history of the galaxy.

  • PDF

Minimum-Time Attitude Reorientations of Three-Axis Stabilized Spacecraft Using Only Magnetic Torquers

  • Roh, Kyoung-Min;Park, Sang-Young;Choi, Kyu-Hong;Lee, Sang-Uk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.17-27
    • /
    • 2007
  • Minimum-time attitude maneuvers of three-axis stabilized spacecraft are presented to study the feasibility of using three magnetic torquers perform large angle maneuvers. Previous applications of magnetic torquers have been limited to spin-stabilized satellites or supplemental actuators of three axis stabilized satellites because of the capability of magnetic torquers to produce torques about a specific axes. The minimum-time attitude maneuver problem is solved by applying a parameter optimization method for orbital cases to verify that the magnetic torque system can perform as required. Direct collocation and a nonlinear programming method with a constraining method by Simpson's rule are used to convert the minimum-time maneuver problems into parameter optimization problems. An appropriate number of nodes is presented to find a bang-bang type solution to the minimum-time problem. Some modifications in the boundary conditions of final attitude are made to solve the problem more robustly and efficiently. The numerical studies illustrate that the presented method can provide a capable and robust attitude reorientation by using only magnetic torquers. However, the required maneuver times are relatively longer than when thrusters or wheels are used. Performance of the system in the presence of errors in the magnetometer as well as the geomagnetic field model still good.

A New Method of determining Initial Conditions for Satellite Formation Flying

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Park, Kwan-Dong;Park, Pil-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.1-8
    • /
    • 2003
  • Satellite formation flying is the placing micro-satellites with the same mission into nearby orbits to form a cluster. Clohessy-Wiltshire equations are used to describe the relative motion and control strategies between satellites within a cluster, which are known as Hill's equations. Even though Hill's equations are powerful in determining initial conditions for the satellite formation flying, they can not accurately express the relative motion under J2 perturbation. Some methods have been developed for the determination of initial conditions to avoid limits of Hill's equation. This paper gives a new method of determining initial conditions using mean elements. For this research mean elements were transformed to osculating elements using Brouwer's theory and the orbit was propaeated with the consideration of J2-J8 to get a relative position. The results show that satellites within a cluster are maintained in the desired boundary for long period and the method is effective on a fuel saving for satellite formation flying.

Development of A Prototype Device to Capture Day/Night Cloud Images based on Whole-Sky Camera Using the Illumination Data (정밀조도정보를 이용한 전천카메라 기반의 주·야간 구름영상촬영용 원형장치 개발)

  • Lee, Jaewon;Park, Inchun;cho, Jungho;Ki, GyunDo;Kim, Young Chul
    • Atmosphere
    • /
    • v.28 no.3
    • /
    • pp.317-324
    • /
    • 2018
  • In this study, we review the ground-based whole-sky camera (WSC), which is developed to continuously capture day and night cloud images using the illumination data from a precision Lightmeter with a high temporal resolution. The WSC is combined with a precision Lightmeter developed in IYA (International Year of Astronomy) for analysis of an artificial light pollution at night and a DSLR camera equipped with a fish-eye lens widely applied in observational astronomy. The WSC is designed to adjust the shutter speed and ISO of the equipped camera according to illumination data in order to stably capture cloud images. And Raspberry Pi is applied to control automatically the related process of taking cloud and sky images every minute under various conditions depending on illumination data from Lightmeter for 24 hours. In addition, it is utilized to post-process and store the cloud images and to upload the data to web page in real time. Finally, we check the technical possibility of the method to observe the cloud distribution (cover, type, height) quantitatively and objectively by the optical system, through analysis of the captured cloud images from the developed device.

A Comparative Analysis of Astronomy Areas in the Elementary Science Textbooks of Korea and the U.S.A. (우리나라와 미국 초등 과학 교과서의 천문 영역 내용 비교 분석)

  • Kwon, Kye-Hyeon;Park, Il-Woo
    • Journal of Korean Elementary Science Education
    • /
    • v.29 no.2
    • /
    • pp.166-185
    • /
    • 2010
  • Astronomy areas in the elementary science textbooks of Korea and the U.S.A. have been compared to find advantages and disadvantages of Korean textbooks. The analysis objects are the 7th national curriculum science textbooks for Korea and the Macmillan McGraw-Hill(MMH) science textbooks for the U.S.A. The results are as follows: First, in contexts, Korean science textbooks contain mostly inquiry activities and partly reading materials. However, MMH ones contain mostly explanations including photographs, related activities, and various reading materials. Second, in the contents and order, the observation activities of constellations are emphasized in Korean science textbooks, while the MMH ones explain solar system up to the universe in details. In addition, Korean science textbooks deal with one subject only once during the whole elementary course while MMH ones deal with one subject repeatedly in several grades. Third, in the frameworks of the international mathematics and science study (TIMSS) 2007, Korean science textbooks do not introduce some contents presented in TIMSS 2007, whereas MMH textbooks introduce every one of them in time. Fourth, the major subjects such as change of moon phases, constellations, the solar system, and change of seasons are handled independently in Korean science textbooks without strong correlation, while they are systematically done related with the rotation and the revolution of the earth in MMH ones.

  • PDF

Bright stars observed by FIMS/SPEAR

  • Jo, Young-Soo;Seon, Kwang-Il;Min, Kyoung-Wook;Choi, Yeon-Ju;Lim, Tae-Ho;Lim, Yeo-Myeong;Edelstein, Jerry;Han, Wonyong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.44.1-44.1
    • /
    • 2016
  • In this paper, we present a catalogue of the spectra of bright stars observed during the sky survey using the Far-Ultraviolet Imaging Spectrograph (FIMS), which was designed primarily to observe diffuse emissions. By carefully eliminating the contamination from the diffuse background, we obtain the spectra of 70 bright stars observed for the first time with a spectral resolution of $2-3{\AA}$ over the wavelength of $1370-1710{\AA}$. The far-ultraviolet spectra of an additional 139 stars are also extracted with a better spectral resolution and/or higher reliability than those of the previous observations. The stellar spectral type of the stars presented in the catalogue spans from O9 to A3. The method of spectral extraction of the bright stars is validated by comparing the spectra of 323 stars with those of the International Ultraviolet Explorer (IUE) observations.

  • PDF

IMAGING CAPABILITY OF THE KVN AND VERA ARRAYS (KaVA)

  • NIINUMA, KOTARO;LEE, SANG-SUNG;KINO, MOTOKI;SOHN, BON WON
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.637-639
    • /
    • 2015
  • The Korean very-long-baseline interferometry (VLBI) network (KVN) and VLBI Exploration of Radio Astrometry (VERA) Array (KaVA) is the first international VLBI array dedicated to high-frequency (23 GHz (K-band) and 43 GHz (Q-band)) observations in East Asia. To evaluate the imagine capability of KaVA, we performed imaging observations of three bright active galactic nuclei (AGNs) known for their complex morphologies: 4C 39.25, 3C 273, and M87 by KaVA at K-/Q-band. Our KaVA images reveal extended outflows with complex substructure such as knots and limb brightening, in agreement with previous observations by other VLBI facilities. Angular resolutions are better than 1.4 and 0.8 milliarcsecond (max) at K-/Q-band, respectively. KaVA achieves a high dynamic range of ~1000, more than three times the value achieved by VERA. We conclude that KaVA is a powerful array with a great potential for the study of AGN outflows, at least comparable to the best existing radio interferometric arrays.

THE NEXT-GENERATION INFRARED ASTRONOMY MISSION SPICA UNDER THE NEW FRAMEWORK

  • NAKAGAWA, TAKAO;SHIBAI, HIROSHI;ONAKA, TAKASHI;MATSUHARA, HIDEO;KANEDA, HIDEHIRO;KAWAKATSU, YASUHIRO
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.621-624
    • /
    • 2015
  • We present the current status (as of August 2014) of SPICA (Space Infrared Telescope for Cosmology and Astrophysics), which is a mission optimized for mid- and far-infrared astronomy with a cryogenically cooled 3m-class telescope. SPICA is expected to achieve high spatial resolution and unprecedented sensitivity in the mid- and far-infrared, which will enable us to address a number of key problems in present-day astronomy, ranging from the star-formation history of the universe to the formation of planets. We have carried out the "Risk Mitigation Phase" activity, in which key technologies essential to the realization of the mission have been extensively developed. Consequently, technical risks for the success of the mission have been significantly mitigated. Along with these technical activities, the international collaboration framework of SPICA has been revisited, which resulted in la arger contribution from ESA than that in the original plan. To enable the ESA participation under the new framework, a SPICA proposal to ESA is under consideration as a medium-class mission under the framework of the ESA Cosmic Vision. The target launch year of SPICA under the new framework is the mid-2020s.

ASTRONOMY WITH SMALL TELESCOPES

  • SINGH, K. YUGINDRO;MEITEI, I. ABLU;SINGH, S. AJITKUMAR;SINGH, R.K. BASANTAKUMAR
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.741-743
    • /
    • 2015
  • We have designed and built three cost effective observatories, in distinct models, which can house Schmidt-Cassegrain type small telescopes having aperture sizes up to 16 inches. Using the available small telescopes, we provided the people of Manipura State in the far north-east corner of India the opportunity to observe directly with their own eyes the rare, spectacular events of the solar eclipse of January 15, 2010, lunar eclipse of December 10, 2011 and the transit of Venus of June 6, 2012. Apart from sharing a platform with the public for astronomy education and popularization through public outreach programs such as workshops, seminars and night watch programs, we have also developed a laboratory infrastructure and gained expertise in observational techniques based on photoelectric photometry, CCD imaging, CCD photometry and spectroscopy. Our team has become a partner in the ongoing international 'Orion project' headquartered in Phoenix, Arizona, USA which will be producing high quality photometric and spectroscopic data for five stars in the Orion constellation, namely Betelgeuse (alpha Orionis), Rigel (beta Orionis), Mintaka (delta Orionis), Alnilam (epsilon Orionis) and Alnitak (zeta Orionis). In the present paper, the authors would like to give a detailed report of their activities for the growth of astronomy in the state of Manipur, India.

STELLAR MAGNETIC ACTIVITY MEASURE BASED ON IUE MG II H+K EMISSION LINES OF MAIN-SEQUENCE G STARS

  • Kim, Dowoon;Choi, Hwajin;Yi, Yu
    • Journal of The Korean Astronomical Society
    • /
    • v.55 no.2
    • /
    • pp.59-66
    • /
    • 2022
  • Stellar magnetic activity is important for formulating the evolution of the star. To represent the stellar magnetic activity, the S index is defined using the Ca II H+K flux measure from the Mount Wilson Observatory. Mg II lines are generated in a manner similar to the formation of Ca II lines, which are more sensitive to weak chromospheric activity. Mg II flux data are available from the International Ultraviolet Explorer (IUE). Thus, the main purpose of this study was to analyze the magnetic activity of stars. We used 343 high-resolution IUE spectra of 14 main-sequence G stars to obtain the Mg II continuum surface flux and Mg II line-core flux around 2,800 Å. We calculated S index using the IUE spectra and compared it with the conventional Mount Wilson S index. We found a color (B - V ) dependent association between the S index and the Mg II emission line-core flux. Furthermore, we attempted to obtain the magnetic activity cycles of these stars based on the new S index. Unfortunately, this was not successful because the IUE observation interval of approximately 17 years is too short to estimate the magnetic activity cycles of G-type stars, whose cycles may be longer than the 11 year mean activity cycle of the sun.