• Title/Summary/Keyword: Internal wind flow

Search Result 72, Processing Time 0.024 seconds

A study on the action mechanism of internal pressures in straight-cone steel cooling tower under two-way coupling between wind and rain

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Yang, Q.;Wang, H.;Tamura, Y.
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.11-27
    • /
    • 2018
  • The straight-cone steel cooling tower is a novel type of structure, which has a distinct aerodynamic distribution on the internal surface of the tower cylinder compared with conventional hyperbolic concrete cooling towers. Especially in the extreme weather conditions of strong wind and heavy rain, heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind, but existing studies mainly focus on the impact effect brought by wind-driven rain to structure surface. In addition, for the indirect air cooled cooling tower, different additional ventilation rate of shutters produces a considerable interference to air movement inside the tower and also to the action mechanism of loads. To solve the problem, a straight-cone steel cooling towerstanding 189 m high and currently being constructed is taken as the research object in this study. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed with continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind sped and rainfall intensity on flow field mechanism, the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower cylinder is analyzed. On this basis, the internal pressures of the cooling tower under the most unfavorable working condition are compared between four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the 3D effect of equivalent internal pressure coefficient is the most significant when considering two-way coupling between wind and rain. Additional load imposed by raindrops on the internal surface of the tower accounts for an extremely small proportion of total wind load, the maximum being only 0.245%. This occurs under the combination of 20 m/s wind velocity and 200 mm/h rainfall intensity. Ventilation rate of shutters not only changes the air movement inside the tower, but also affects the accumulated amount and distribution of raindrops on the internal surface.

Effect of building volume and opening size on fluctuating internal pressures

  • Ginger, John D.;Holmes, John D.;Kopp, Gregory A.
    • Wind and Structures
    • /
    • v.11 no.5
    • /
    • pp.361-376
    • /
    • 2008
  • This paper considers internal pressure fluctuations for a range of building volumes and dominant wall opening areas. The study recognizes that the air flow in and out of the dominant opening in the envelope generates Helmholtz resonance, which can amplify the internal pressure fluctuations compared to the external pressure, at the opening. Numerical methods were used to estimate fluctuating standard deviation and peak (i.e. design) internal pressures from full-scale measured external pressures. The ratios of standard deviation and peak internal pressures to the external pressures at a dominant windward wall opening of area, AW are presented in terms of the non-dimensional opening size to volume parameter, $S^*=(a_s/\bar{U}_h)^2(A_W^{3/2}/V_{Ie})$ where $a_s$ is the speed of sound, $\bar{U}_h$ is the mean wind speed at the top of the building and $V_{Ie}$ is the effective internal volume. The standard deviation of internal pressure exceeds the external pressures at the opening, for $S^*$ greater than about 0.75, showing increasing amplification with increasing $S^*$. The peak internal pressure can be expected to exceed the peak external pressure at the opening by 10% to 50%, for $S^*$ greater than about 5. A dominant leeward wall opening also produces similar fluctuating internal pressure characteristics.

Analysis for Seasonal Operation Performance of Multistory Facade (전면형 이중외피의 절기별 운용성능 분석)

  • Im, Hye-Jin;Cho, Soo;Sung, Uk-Ju;Lim, Sang-Hun;Haan, Chan-Hun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.111-120
    • /
    • 2012
  • In this study, to present the data in the internal thermal condition of Double skin facade were measured internal temperature and inlet and outlet openings wind speed of double skin facade. Measurements were similar to temperatures in the upper double skin facade. Especially in summer, temperature stratification is through to be unfulfilled seamlessly despite inlet and outlet openings open. Double skin facade inlet and outlet openings of the air flow rate was slower outlet openings of the air flow rate than inlet openings of the air flow rate.

A Three-dimensional Spectral Model for the Computation of Wind-induced Flows in a Homogeneous Shelf Sea (취송류 재현을 위한 3차원 스펙트랄모형 개발)

  • So, Jae-Kwi;Jung, Kyung-Tae;Lee, Kwang-Soo;Seung, Young-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.2
    • /
    • pp.91-107
    • /
    • 1992
  • A numerical formulation is developed to solve the linear three-dimensional hydrodynamic equations which describes wind induced flows in a homogeneous shelf sea. The hydmdynamic equations are at the outset separated into two systems. namely, an equation containing the gradient of sea surface elevation and the mean flow (external mode) and an equation describing the deviation from the mean flow (internal mode). The Galerkin method is then applied to the internal mode equation. The eigenvalues are determined from the eigenvalue problem involving the vertical eddy viscosity subject to a homogeneous boundary condition at the surface and a sheared boundary condition at the sea bed. The model is tested in a one-dimensional channel with uniform depth under a steady, uniform wind. The analytical velocity profile by Cooper and Pearce (1977) using a constant vertical eddy viscosity in channels of infinite and finite length is chosen as a benchmark solution. The model is also tested in a homogeneous, rectangular basin with constant depth under a steady, uniform wind field (the Heaps' Basin of the North Sea scale).

  • PDF

Investigation into the Hysteretic Behaviors of Shock Wave in a Supersonic Wind Tunnel (초음속 풍동에서 발생하는 충격파 히스테리시스 현상의 연구)

  • Lee, Ik In;Kim, Heuy Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.609-611
    • /
    • 2017
  • The hysteresis phenomena are frequently encountered in the wide variety of fluid flow systems of industrial and engineering applications. Hysteresis mainly appears during the transient change of pressure ratios, and this, in turn, influences the performance the supersonic wind tunnel. However, investigations on the hysteresis phenomenon particularly inside the supersonic wind tunnel are rarely studied. In the present study, numerical simulations are carried out to investigate hysteresis phenomenon of the shock waves inside the Supersonic Wind Tunnel. The unsteady, compressible flow through the supersonic wind tunnel is computationaly analyzed with an symmetric model. The Navier-Stokes equations are solved with Spalart-Allmaras turbulence model using a fully implicit finite volume scheme. The variaton in the flow field between the starting pressure ratio and operating pressure ratio of a supersonic wind tunnel is investigated in terms of hysteresis phenomenon.

  • PDF

Recycling of Suspended Particulates by Atmospheric Boundary Depth and Coastal Circulation (대기경계층과 연안순환에 의한 부유입자의 재순환)

  • Choe, Hyo
    • Journal of Environmental Science International
    • /
    • v.13 no.8
    • /
    • pp.721-731
    • /
    • 2004
  • The dispersion of suspended particulates in the coastal complex terrain of mountain-inland basin (city)-sea, considering their recycling was investigated using three-dimensional non-hydrostatic numerical model and lagrangian particle model (or random walk model). Convective boundary layer under synoptic scale westerly wind is developed with a thickness of about I km over the ground in the west of the mountain, while a thickness of thermal internal boundary layer (TIBL) is only confined to less than 200m along the eastern slope of the mountain, below an easterly sea breeze circulation. At the mid of the eastern slop of the mountain, westerly wind confronts easterly sea breeze, which goes to the height of 1700 m above sea level and is finally eastward return flow toward the sea. At this time, particulates floated from the ground surface of the city to the top of TIBL go along the eastern slope of the mountain in the passage of sea breeze, being away the TIBL and reach near the top of the mountain. Then those particulates disperse eastward below the height of sea-breeze circulation and widely spread out over the coastal sea. Total suspended particulate concentration near the ground surface of the city is very low. On the other hand, nighttime radiative cooling produces a shallow nocturnal surface inversion layer (NSIL) of 200 m thickness over the inland surface, but relatively thin thickness less than 100m is found near the mountain surface. As synoptic scale westerly wind should be intensified under the association of mountain wind along the eastern slope of mountain to inland plain and further combine with land-breeze from inland plain toward sea, resulting in strong wind as internal gravity waves with a hydraulic jump motion bounding up to about 1km upper level in the atmosphere in the west of the city and becoming a eastward return flow. Simultaneously, wind near the eastern coastal side of the city was moderate. Since the downward strong wind penetrated into the city, the particulate matters floated near the top of the mountain in the day also moved down along the eastern slope of the mountain, reaching the. downtown and merging in the ground surface inside the NSIL with a maximum ground level concentration of total suspended particulates (TSP) at 0300 LST. Some of them were bounded up from the ground surface to the 1km upper level and the others were forward to the coastal sea surface, showing their dispersions from the coastal NSIL toward the propagation area of internal gravity waves. On the next day at 0600 LST and 0900 LST, the dispersed particulates into the coastal sea could return to the coastal inland area under the influence of sea breeze and the recycled particulates combine with emitted ones from the ground surface, resulting in relatively high TSP concentration. Later, they float again up to the thermal internal boundary layer, following sea breeze circulation.

An Experimental Study on Internal Drag Correction of High Speed Vehicle Using Three Probes (세 가지 프로브를 이용한 초고속 비행체 내부 항력 보정 기법의 실험적 연구)

  • Jin, Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.529-537
    • /
    • 2021
  • Wind tunnel tests were carried out with a scramjet high speed vehicle. Since the scramjet engine does not have a compressor, it has a simple structure, but it is important to design the intake for the supersonic combustion in the combustion chamber. In this study, internal flow characteristics and the starting condition were analyzed by measuring the pressure at the isolator exit just before the combustion chamber, and the intake performance parameters were calculated and compared the result on every Mach number. The aerodynamic characteristics of the flow-through high speed vehicle were analyzed and internal drag correction is required to precisely analyze the aerodynamic characteristics. In this paper, an experimental technique using three probes for internal drag correction was proposed. By applying internal drag correction, it was able to figure out the effect of the internal flow on the aerodynamic force of the vehicle.

Wind loading characteristics of super-large cooling towers

  • Zhao, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.13 no.3
    • /
    • pp.257-273
    • /
    • 2010
  • The aerodynamic and aero-elastic model tests of the China''s highest cooling tower has been carried out in the TJ-3 Boundary Layer Wind Tunnel of Tongji University. By adopting a scanivalve system, the external wind pressure is firstly measured on $12{\times}36$ taps for a single tower, two and four grouped towers under the condition of both smooth flow and the boundary layer due to surrounding geographic and building topography. The measurements of internal wind pressure distribution of $6{\times}36$ taps are taken for a single tower under the various ventilation ratios ranging from 0% to 100% of stuffing layers located at the bottom of the tower. In the last stage, the wind tunnel tests with an aero-elastic model are carefully conducted to determine wind-induced displacements at six levels (each with eight points) with laser displacement sensors. According to the measurement results of wind pressure or vibration response, the extreme aerodynamic loading values of the single or grouped towers are accordingly analyzed based on probability correlation technique.

Effect of building proximity on external and internal pressures under tornado-like flow

  • Sabareesh, G.R.;Cao, Shuyang;Wang, Jin;Matsui, Masahiro;Tamura, Yukio
    • Wind and Structures
    • /
    • v.26 no.3
    • /
    • pp.163-177
    • /
    • 2018
  • Tornadoes are one of the world's deadliest natural phenomena. They are characterized by short life span and danger. It has been observed through post-damage surveys that localities with large numbers of buildings suffer major damage during a tornado attack resulting in huge loss of life and property. Thus,it is important to study interfering buildings exposed to tornado-like vortices. The present study focuses on external and internal pressures developed on building models exposed to translating tornado-like vortices in the presence of an interfering building model. The effects of translating speed and swirl ratio of a tornado-like vortex on external and internal pressures for a principal building in the vicinity of an interfering building are investigated. Results indicate that external and internal pressures are enhanced or reduced depending on the location of the interfering building with respect to the principal building.

An Experimental Study on Aircraft Internal Store Separation Characteristics (항공기 내부무장 분리특성 분석을 위한 풍동시험연구)

  • An, Eunhye;Cho, Donghyun;Kim, Jongbum;Jang, Youngil;Jeong, KyeongJin;Kim, Sangjin;Lee, Hokeun;Reu, Taekyu;Chung, Hyoungseog
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.81-89
    • /
    • 2017
  • This study investigates store separation characteristics of an unmanned aerial vehicle having generic stealth configuration over unsteady flow of an internal bay. Free-drop wind tunnel tests are conducted to simulate bomb releases from an internal weapons bay while high-speed camera images are taken. The images are analyzed to examine the effects of flow velocity, angle of attack, flap deflection and the ejector force application on the store separation trajectories. For the free-drop wind tunnel tests, Froude Scaling is applied to match the dynamic similarity for the bomb model, and the ejector force is simulated by using small pneumatic cylinders. The results indicate that the test bomb model safely separates from the internal bay at the given test conditions and configurations. It is also observed that the effects of the flow velocity and ejector force application have greater impacts on the separation trajectories than those of angle of attack and flap deflection.