• Title/Summary/Keyword: Internal valve

Search Result 333, Processing Time 0.025 seconds

Flow Characteristics of Cryogenic Butterfly Valve for LNG Carrier (Part 1 : CFD Analysis and its Comparison with Experimentation) (LNG선용 버터플라이밸브의 유동특성에 관한 연구 (제1부 : CFD해석과 실험결과의 비교))

  • Kim, Sang-Wan;Choi, Young-Do;Kim, Jung-Hwan;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.2
    • /
    • pp.13-19
    • /
    • 2008
  • Butterfly valves are widely used as control valves for industrial process. For the definition of optimum configuration of the valve, wide range of related studies has been actively conducted in the case of working fluids of water or air under the normal temperature. Recently, internal flow and performance characteristics of cryogenic butterfly valve for LNG carrier take a growing interest in the field of research and development. Therefore, present study is aimed to investigate the internal flow and performance characteristics of the cryogenic butterfly valve because the study result for the valve can be hardly found at present. Part 1 of this paper describes the study result of a butterfly valve model under the condition of the normal temperature. Succeeding Part 2 of this paper will describe the internal flow characteristics of a cryogenic butterfly valve for LNG carrier. The results of Part 1 show that pressure loss coefficients and flow rate coefficients obtained by the present experiment and CFD analysis agree well each other. Moreover, internal flow visualization for the valve by CFD analysis and PIV measurement have revealed complicated flow patterns of the internal flow field in detail.

A Study on the Numerical Analysis of Internal Flow in a Cone Type Valve (Cone Type 밸브 내부유동 수치해석에 관한 연구)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.199-207
    • /
    • 2020
  • These days, many different types of valves are developed in the industrial area according to their use purpose. Multiple kinds of valves are installed to control a flow and pressure of the pipe conveying fluid. Valves serve as critical roles in land plants such as power plants. The performance of equipment varies depending on valve characteristics. In this study, the internal flow analysis on Cone-type valve is conducted to analyze flow field and secure a value of the flow coefficient Cv. According to the internal flow analysis, when the flow distribution of the middle cross-section of valve was open 100%, flow field was relatively and smoothly taken out. If it was open 50%, flow recirculation region increased and a little complex flow field occurred. Unlike ball valve or butterfly valve, this valve had flow recirculation in its outlet depending on a valve opening amount. Therefore, it was found that there was no flow recirculation in the outlet of Cone-type valve.

Effect of Valve Lift and Timing on Internal Exhaust Gas Recirculation and Combustion in DME Homogeneous Charge Compression Ignition Engine (DME 예혼합 압축 착화 엔진에서 밸브 양정과 개폐시기가 내부 배기가스 재순환과 연소에 미치는 영향)

  • Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.93-100
    • /
    • 2009
  • Intake/exhaust valve timing and exhaust cam lift were changed to control the internal exhaust gas recirculation (IEGR) and combustion phase of homogeneous charge compression ignition (HCCI) engine. To measure the IEGR rate, in-cylinder gas was sampled during from intake valve close to before ignition start. The lower exhaust cam made shorter valve event than higher exhaust cam and made IEGR increase because of trapping the exhaust gas. IEGR rate was more affected by exhaust valve timing than intake valve timing and increased as exhaust valve timing advanced. In-cylinder pressure was increased near top dead center due to early close of exhaust valve. Ignition timing was more affected by intake valve timing than exhaust valve timing in case of exhaust valve lift 8.4 mm, while ignition timing was affected by both intake and exhaust valve timing in case of exhaust valve 2.5 mm. Burn duration with exhaust valve lift 2.5 mm was longer than other case due to higher IEGR rate. The fuel conversion efficiency with higher exhaust valve lift was higher than that with lower exhaust valve lift. The late exhaust and intake maximum open point (MOP) made the fuel conversion efficiency improve.

The Development of Rotoless Electronic Circulating Pump System with Internal Three Way Valve for Boiler - Objective for the 1st Year : Development of New Housing with Internal Three Way Valve - (보일러용 3way valve내장형 rotoless 전자식순환펌프 시스템의 개발 - 1차년도 목표 : 3way valve 내장형 하우징의 개발 -)

  • Han, J.W.;Kum, S.M.;Ryu, B.H.;Lee, C.E.;Ohu, S.C.;Yim, J.S.
    • Solar Energy
    • /
    • v.16 no.2
    • /
    • pp.97-112
    • /
    • 1996
  • The purpose of research is to complement the circulating pump of gas boiler for the domestic and to develop a pump housing with internal three way valve: Housing and three way valve have been apart in the existing pump system. Based on the experimental result on can-typed circulating pump with existing housing, a new housing with internal three way valve was designed and manufactured. The performance of can-typed circulating pump with the new housing, and the performance of circulating pump of boiler system were tested. As a result ot the test, the new housing with internal three way valve has been excellent in respect of pump performance, weight and manufacturing cost. So It is expected to have an effect of import substitution.

  • PDF

Structure Improvement and New Product Development of Valve Tester (밸브시험기의 구조개선 및 신제품 개발)

  • LEE, Jong-Sun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.2
    • /
    • pp.350-355
    • /
    • 2016
  • This research aims to evaluated the structure improvement and new product development of valve tester. A valve tester was redesigned for structure improvement and new product development using 3-D design program CATIA. In addition, behavior analysis was conducted on the modeled valve tester using the ANSYS program. The total deformation, stress and strain were obtained by the internal pressure change. This result was applied to the new product development of valve tester.

Study on Evaluation of Internal Leak of Turbine Control Valve in Power Plant Using Acoustic Emission Signal Measurement (음향방출 계측에 의한 터빈 제어밸브 내부누설 평가연구)

  • Lee, S.G.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.65-70
    • /
    • 2008
  • The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the turbine major valves relating to safety for turbine operating and prevention of turbine trouble at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized electro-hydraulic control oil flowed through turbine electro-hydraulic controller oil check valve and turbine power/trip fluid solenoid valve in the condition of actual turbine operating. The acoustic emission method was applied to the valves at the site, and the background noise was measured far the abnormal plant condition. To judge for the leak existence ell the object valves, voltage analysis and frequency analysis of acoustic signal emitted from infernal leak in the valve operating condition are performed. It was conformed that acoustic emission method could monitor for valve internal leak to high sensitivity.

  • PDF

Study on Evaluation of the Leak Rate for Steam Valve in Power Plant (발전용 증기밸브 누설량 평가에 관한 연구)

  • Lee, S.G.;Park, J.H.;Yoo, G.B.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.45-50
    • /
    • 2007
  • Acoustic emission technology is applied to diagnosis the internal leak and operating conditions of the major valves at nuclear power plants. The purpose of this study is to verify availability of the acoustic emission as in-situ diagnosis method. In this study, acoustic emission tests are performed when the pressurized high temperature steam flowed through gate valve(1st stage reheater valve) and glove valve(main steam dump valve) on the normal size of 4 and 8". The valve internal leak diagnosis system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, signal level analysis and RMS(root mean square) analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF

Experimental Study on the Internal Flow of a Ball Valve used for a Gas Pipeline (가스 파이프라인용 볼 밸브 내부유동의 실험적 연구)

  • KIM, CHUL-KYU;LEE, SANG-MOON;JANG, CHOON-MAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.3
    • /
    • pp.311-317
    • /
    • 2016
  • This paper presents the flow characteristics of a ball valve used for a gas pipeline. Understanding of the internal flow of a ball valve is an important to analyze the physical phenomena of the valve. Present experimental study was performed by IEC 60534-2-3, the international standard for an industrial control valve testing procedure. Pressure measured at upstream and downstream of the valve, flow-rate and gas temperature passing the inside of the gas pipeline were measured with respect to valve opening rates. Throughout the experimental measurement of the ball valve, empirical equation of the pressure drop between the ball valve according to the mass flow rates is successively obtained using a polynomial curve fitting method. In addition, flow coefficient for determining the valve capacity is also analyzed with respect to valve opening rates using the curve fitting method.

Study on the Real-Time Leak Monitoring Technique for Power Plant Valves (발전용 밸브누설 실시간 감시기술 연구)

  • Lee, S.G.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.39-44
    • /
    • 2007
  • The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the major valves at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized temperature water and steam flowed through glove valve(main steam dump valve) and check valve(main steam outlet pump check valve) on the normal size of 12 and 18". The valve internal leak monitoring system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, frequency analysis, voltage analysis and amplitude analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF

Leak Evaluation for Power Plant Valve Using Multi-Measuring Method

  • Lee, Sang-Guk;Park, Jong-Hyuck;Kim, Young-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.469-476
    • /
    • 2008
  • Condition based maintenance(CBM) for the preventive diagnosis of important equipments related to safety or accident in power plant is essential by using the suitable methods based on actual power plant conditions. To improve the reliability and accuracy of the measured value at the minute leak situation, and also to monitor continuously internal leak condition of power plant valve, the development of a diagnosis and monitoring technique using multi-measuring method should be performed urgently. This study was conducted to estimate the feasibility of multi-measuring method using three different methods such as acoustic emission(AE) method, thermal image measurement and temperature difference$({\Delta}T)$ measurement that are applicable to internal leak diagnosis for the power plant valve. From the experimental results, it was suggested that the multi-measuring method could be an effective way to precisely diagnose and evaluate internal leak situation of valve.