• 제목/요약/키워드: Internal reformer

검색결과 17건 처리시간 0.022초

발전용 평판형 연료전지 분리판 및 내부개질기 개발 (Development of planar Fuel Cell Separator and Reformer)

  • 이증우;허규철;차정은;이상현;황정태;조성호;정병수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.91.2-91.2
    • /
    • 2010
  • SOFC는 높은 반응온도($600{\sim}1000^{\circ}C$)에서 작동되어 발전효율이 높고 다양한 연료를 사용할 수 있는 것이 장점이다. 하지만 고온에서의 운전은 구성요소의 열변형과 온도구배에 의한 전극촉매의 열화 그리고 밀봉재의 수명에 영향을 주어 결국 스택의 내구성을 감소시킨다. 특히 스택의 온도구배가 심화되면 국부적인 Hot spot를 형성하여 셀에 심각한 손상을 주게 된다. 본 과제에서는 SOFC 스택의 온도구배를 완화시키기 위한 내부개질기의 개발 및 고온용 분리판 소재의 정밀성형기술을 확보하고자 한다. 열/유동해석을 통하여 반응가스의 농도, 유속, 구조변경 등 내부개질기 온도구배에 대한 주요인자를 확인하였고, 장기 운전평가를 통하여 개질 촉매의 고온 활성 및 내구성에 대한 성능평가를 진행 중이다. 분리판의 경우, 고온용 소재(페라이트계 스테인레스)에 대한 기초실험을 실시하여 성형품질의 주요 인자를 파악하였으며 Proto-type 금형 설계 및 개발을 통하여 성형 기초기술을 확보하였다. 그리고 스택 내부온도를 구현할 수 있는 시뮬레이터를 설계 중에 있으며 이를 이용하여 개발된 내부개질기 및 분리판을 스택 운전환경에서 평가할 예정이다.

  • PDF

천연가스 개질 방식 중소형 고순도 수소제조 장치 개발 연구 (Study on the development of small-scale hydrogen production unit using steam reforming of natural gas)

  • 서동주;주국택;정운호;박상호;윤왕래
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.720-722
    • /
    • 2009
  • This work is mainly focused at developing the hydrogen production unit with the capacity of 20 $Nm^3/h$ of high purity hydrogen. At present steam reforming of natural gas is the preferable method to produce hydrogen at the point of production cost. The developed hydrogen production unit composed of natural gas reformer and pressure swing adsorption system. To improve the thermal efficiency of steam reforming reactor, the internal heat recuperating structure was adopted. The heat contained in reformed gas which comes out of the catalytic beds recovered by reaction feed stream. These features of design reduce the fuel consumption into burner and the heat duty of external heat exchangers, such as feed pre-heater and steam generator. The production rate of natural gas reformer was 41.7 $Nm^3/h$ as a dryreformate basis. The composition of PSA feed gas was $H_2$ 78.26%, $CO_2$ 18.49%, CO 1.43% and $CH_4$ 1.85%. The integrated production unit can produce 21.1 $Nm^3/h$ of high-purity hydrogen (99.997%). The hydrogen production efficiency of the developed unit was more than 58% as an LHV basis.

  • PDF

상압형 MCFC/가스터빈 하이브리드 시스템의 구성방법에 따른 설계성능 분석 (Effect of System Configuration on Design Performance of Atmospheric Pressure MCFC/Gas Turbine Hybrid Systems)

  • 오경석;김동섭
    • 설비공학논문집
    • /
    • 제16권11호
    • /
    • pp.1021-1027
    • /
    • 2004
  • Design performances of various configurations of hybrid systems combining an atmospheric pressure molten carbonate fuel cell and a gas turbine have been analyzed. Two different fuel reforming methods (internal and external reforming) were considered. Influences of turbine inflow heating method, location of fuel combustor and associated component arrangements were investigated. In general, internal reforming leads to higher system efficiencies. The optimum design pressure ratio varies among different system configurations. In particular, the design point selection is closely related to the allowable turbine inlet temperature. Configurations with direct heating of turbine inlet flow may realize both higher efficiency and higher specific power than those with indirect heating.

10kW급 건물용 고체산화물연료전지(SOFC) 시스템 모델을 이용한 운전조건 최적화 연구 (Optimization of Operating Conditions for a 10 kW SOFC System)

  • 이율호;양찬욱;양충모;박상현;박성진
    • 한국수소및신에너지학회논문집
    • /
    • 제27권1호
    • /
    • pp.49-62
    • /
    • 2016
  • In this study, a solid oxide fuel cell (SOFC) system model including balance of plant (BOP) for building electric power generation is developed to study the effect of operating conditions on the system efficiency and power output. SOFC system modeled in this study consists of three heat-exchangers, an external reformer, burner, and two blowers. A detailed computational cell model including internal reforming reaction is developed for a planer SOFC stack which is operated at intermediate temperature (IT). The BOP models including an external reformer, heat-exchangers, a burner, blowers, pipes are developed to predict the gas temperature, pressure drops and flow rate at every component in the system. The SOFC stack model and BOP models are integrate to estimate the effect of operating parameters on the performance of the system. In this study, the design of experiment (DOE) is used to compare the effects of fuel flow rate, air flow rate, air temperature, current density, and recycle ratio of anode off gas on the system efficiency and power output.

원통형 고체산화물 연료전지와 마이크로 가스터빈 하이브리드 시스템의 성능해석을 위한 모델링 (Modeling for the Performance Analysis of a Tubular SOFC/MGT Hybrid Power System)

  • 송태원;손정락;김재환;김동섭;노승탁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2070-2075
    • /
    • 2004
  • Performance of a solid oxide fuel cell (SOFC) can be enhanced by converting thermal energy of its high temperature exhaust gas to mechanical power using a micro gas turbine (MGT). A MGT plays also an important role to pressurize and warm up inlet gas streams of the SOFC. In this study, the influence of performance characteristics of the tubular SOFC on the hybrid power system is discussed. For this purpose, detailed heat and mass transfer with reforming and electrochemical reactions in the SOFC are mathematically modeled, and their results are reflected to the performance analysis. The analysis target is 220kWe SOFC/MGT hybrid system based on the tubular SOFC developed by Siemens-Westinghouse. Special attention is paid to the ohmic losses in the tubular SOFC counting not only current flow in radial direction, but also current flow in circumferential direction through the anode and cathode.

  • PDF

등유 개질가스를 이용한 고체산화물 연료전지 스택의 시스템 구성과 운영 (System configuration and operation for Kerosene-driven SOFC stack)

  • 김선영;윤상호;배중면;유영성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2144-2148
    • /
    • 2008
  • Kerosene-driven solid oxide fuel cell (SOFC) system with reformer, desulfurizer and after-burner was mainly developed for this study. Originally the system was developed for 1kW class SOFC system for residential power generation (RPG) application. As a preliminary study of 1kW class SOFC system operation, a short stack was applied to the system. The short stack consists of 7 cells of $10cm{\times}10cm$ area and was operated at $720^{\circ}C$. The effect of anode inlet gas composition to stack performance was investigated. Firstly, I-V characteristics of SOFC with different fuel of kerosene and hydrogen were studied. Secondly $CH_4$ internal reforming was performed at various anode inlet gas compositions of $H_2$, $CH_4$ and $H_2O$. Through these experiments the effects of each anode inlet gas component to stack performance were analyzed and the significant operating parameters were iscussed.

  • PDF

5kW 급 MCFC 발전시스템 촉매연소기의 유동 및 연소 특성에 대한 수치적 연구 (A Numerical Study on the Internal Flow and Combustion Characteristics of the Catalytic Combustor for the 5kW MCFC Power system)

  • 김종민;이연화;김만영;김형곤;홍동진;조주형;김한석;안국영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3049-3052
    • /
    • 2008
  • MCFC(molten carbonate fuel cell) power generation system is prime candidate for the utilization of fossil based fuels to generate ultra clean power with a high efficiency. In the MCFC power plant system, a combustor performs a role to supply high temperature mixture gases for cathode and heat for reformer by using the stack off-gas of the anode which includes a high concentration of $H_2O$ and $CO_2$. Since a combustor needs to be operated in a very lean condition and to avoid excessive local heating, catalytic combustor is usually used. The catalytic combustion is accomplished by the catalytic chemical reaction between fuel and oxidizer at catalyst surface, different from conventional combustion. In this study, a mathematical model for the prediction of internal flow and catalytic combustion characteristics in the catalytic combustor adopted in the MCFC power plant system is suggested by using the numerical methods. The numerical simulation models are then implemented into the commercial CFD code. After verifying result by comparing with the experimental data and calibrated kinetic parameters of catalytic combustion reaction, a numerical simulation is performed to investigate the variation of flow and combustion characteristics by changing such various parameters as inlet configuration and inlet temperature. The result show that the catalytic combustion can be effectively improved for most of the case by using the perforated plate and subsequent stable catalytic combustion is expected.

  • PDF