• Title/Summary/Keyword: Internal oblique muscle

Search Result 255, Processing Time 0.024 seconds

Anatomical Observation on Components Related to Foot Gworeum Meridian Muscle in Human

  • Park, Kyoung-Sik
    • The Journal of Korean Medicine
    • /
    • v.32 no.3
    • /
    • pp.1-9
    • /
    • 2011
  • Objectives: This study was carried out to observe the foot gworeum meridian muscle from a viewpoint of human anatomy on the assumption that the meridian muscle system is basically matched to the meridian vessel system as a part of the meridian system, and further to support the accurate application of acupuncture in clinical practice. Methods: Meridian points corresponding to the foot gworeum meridian muscle at the body surface were labeled with latex, being based on Korean standard acupuncture point locations. In order to expose components related to the foot gworeum meridian muscle, the cadaver was then dissected, being respectively divided into superficial, middle, and deep layers while entering more deeply. Results: Anatomical components related to the foot gworeum meridian muscle in human are composed of muscles, fascia, ligament, nerves, etc. The anatomical components of the foot gworeum meridian muscle in cadaver are as follows: 1. Muscle: Dorsal pedis fascia, crural fascia, flexor digitorum (digit.) longus muscle (m.), soleus m., sartorius m., adductor longus m., and external abdominal oblique m. aponeurosis at the superficial layer, dorsal interosseous m. tendon (tend.), extensor (ext.) hallucis brevis m. tend., ext. hallucis longus m. tend., tibialis anterior m. tend., flexor digit. longus m., and internal abdominal oblique m. at the middle layer, and finally posterior tibialis m., gracilis m. tend., semitendinosus m. tend., semimembranosus m. tend., gastrocnemius m., adductor magnus m. tend., vastus medialis m., adductor brevis m., and intercostal m. at the deep layer. 2. Nerve: Dorsal digital branch (br.) of the deep peroneal nerve (n.), dorsal br. of the proper plantar digital n., medial br. of the deep peroneal n., saphenous n., infrapatellar br. of the saphenous n., cutaneous (cut.) br. of the obturator n., femoral br. of the genitofemoral n., anterior (ant.) cut. br. of the femoral n., ant. cut. br. of the iliohypogastric n., lateral cut. br. of the intercostal n. (T11), and lateral cut. br. of the intercostal n. (T6) at the superficial layer, saphenous n., ant. division of the obturator n., post. division of the obturator n., obturator n., ant. cut. br. of the intercostal n. (T11), and ant. cut. br. of the intercostal n. (T6) at the middle layer, and finally tibialis n. and articular br. of tibial n. at the deep layer. Conclusion: The meridian muscle system seemed to be closely matched to the meridian vessel system as a part of the meridian system. This study shows comparative differences from established studies on anatomical components related to the foot gworeum meridian muscle, and also from the methodical aspect of the analytic process. In addition, the human foot gworeum meridian muscle is composed of the proper muscles, and also may include the relevant nerves, but it is as questionable as ever, and we can guess that there are somewhat conceptual differences between terms (that is, nerves which control muscles in the foot gworeum meridian muscle and those which pass nearby) in human anatomy.

Effects of Different Knee Flexion Angles According to Three Positions on Abdominal and Pelvic Muscle Activity During Supine Bridging

  • Lim, One-Bin;Kim, Ki-Song
    • Physical Therapy Korea
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 2013
  • This study analyzes how different knee flexion angles affect the abdominal and pelvic muscle activity during supine bridging. Twenty healthy subjects participated in the study. We used surface electromyography (EMG) to measure how three different knee flexion angles ($100^{\circ}$, $70^{\circ}$, and $40^{\circ}$) affected the activity of the transverse abdominis/internal oblique (TrA/IO), external oblique (EO), biceps femoris (BF), rectus femoris (RF), and gluteus maximus (GM) muscles on the dominant side during supine bridging. The one-way repeated analysis of variance (ANOVA) was used to determine the statistical significance of TrA/IO, EO, BF, RF and GM muscle activity and the GM/BF activity ratio. For the TrA/IO, EO, BF, and GM muscles, supine bridging with different knee flexion angles resulted in significant differences in abdominal and pelvic muscle activity. For the TrA/IO muscles, the post-hoc test demonstrated that muscle activity significantly increased at $40^{\circ}$ compared to $70^{\circ}$; however, there were no significant differences between $100^{\circ}$ and $70^{\circ}$ or $100^{\circ}$ and $40^{\circ}$. For the EO muscle, the post-hoc test demonstrated that muscle activity significantly increased at $40^{\circ}$ compared to $100^{\circ}$ and $70^{\circ}$; no significant difference was observed between angles $100^{\circ}$ and $70^{\circ}$. For the BF muscle, the post-hoc test demonstrated that muscle activity significantly increased according to the knee flexion angle ($40^{\circ}$ > $70^{\circ}$ > $100^{\circ}$). For the GM muscle, the post-hoc test demonstrated that muscle activity significantly increased according to the knee flexion angle ($100^{\circ}$ > $70^{\circ}$ > $40^{\circ}$). However, for the RF muscle, there was no significant difference. Additionally, the GM/BF activity ratio significantly increased according to the knee flexion angle ($100^{\circ}$ > $70^{\circ}$ > $40^{\circ}$). From these results, we can conclude that bridging with a knee flexion of $100^{\circ}$ can strengthen the GM muscle, whereas bridging with a knee flexion of $40^{\circ}$ is recommended to strengthen the IO, EO, and BF muscles. We can also conclude that knee flexion angles should be modified during supine bridging to increase the muscle activity of different target muscles.

The Effect of Closed Kinetic and Open Kinetic Exercise on Thickness of Low Back Stabilization Exercise Using an Ultrasonography Imaging (닫힌사슬운동과 열린사슬운동이 요부안정화근의 두께에 미치는 영향)

  • Bae, Wonsik;Kim, Chihyok
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.1 no.2
    • /
    • pp.67-80
    • /
    • 2013
  • Purpose : This study was to investigate effects of closed kinetic chain and open kinetic chain exercise on the lumbar stabilizarion. Methods : A total of 30 healthy over 20 years old college students(men = 14, women = 16) who were participated in this. We selected randomly people of CKC, OKC, and control group. For the past four weeks, CKC and OKC group worked out 3 times per week and then we compared within group and between groups on muscle width. Results : 1. The width of internal oblique, transverse abdominis, and multifidus were all significantly increased after four weeks exercise in the CKC group(P<.05). 2. The width of internal oblique, transverse abdominis, and multifidus were all increased after four weeks exercise in the OKC group but transverse abdominis musule only showed significant difference. 3. Difference values between pre-exercise and post-exercise of transverse abdominis and multifidus in the CKC group was significantly high and difference among the groups were significant. Conclusion : Accordingly, lumbar stabilizing exercise was more effective to increase a width of abdominal deep muscles through CKC exercise.

Effect of Hip Adductor Co-contraction on Trunk Muscle Activation during Bridge Exercise in Healthy Young Individuals (젊은 성인의 교각운동 시 고관절 내전근 동시수축이 체간근육의 활성도에 미치는 영향)

  • Na, Sun-Wang;Oh, Duck-Won;Park, Hyun-Ju
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.3
    • /
    • pp.275-282
    • /
    • 2012
  • Purpose : Bridge exercise has been commonly used in clinical rehabilitation settings to improve trunk control, and hip adductor muscles were a related muscle that may affect trunk muscle activation. The aim of this study was to investigate whether the co-contraction of hip adductor muscles may affect trunk muscle activation during bridge exercises. Methods : Thirty-eight healthy young subjects (19 men and 19 women) performed bridge exercises (with and without hip adduction movement). Surface electromyography (EMG) data were collected from the dominant-side internal oblique (IO), rectus abdominis (RA), multifidus (MF) and erect spine (ES) during bridge exercises to compare trunk muscles activation patterns. Result : The EMG activities of IO and RA appeared to be significantly higher during bridge exercise with hip adductor co-contraction than during bridge exercise alone (p<.01), but there were no significant differences in those of MF and ES. Furthermore, there were significant differences in the IO:RA EMG ratio during bridge exercise with hip adductor co-contraction (p<.05). Conclusion : These findings suggest that integration of hip adduction during bridge exercise may be beneficial in increasing deep muscles' activity for trunk stabilization.

EMG Activities of Core Muscles During Bridging Exercises With and Without a Pilates Resistive Device

  • Kim, Su-Jin;Yoo, Won-Gyu;Kim, Min-Hee;Yi, Chung-Hwi
    • Physical Therapy Korea
    • /
    • v.14 no.4
    • /
    • pp.21-27
    • /
    • 2007
  • The purposes of this study were to compare core muscle activities with and without the use of Pilates resistive equipment during bridging exercises and to investigate the efficacy of a Pilates device. Fourteen healthy individuals (6 males, 8 females) between 20 to 26 years of age were examined. They were engaged in a bridging exercise with and without a magic circle. Three consecutive repetitions of each exercise were performed. Surface electromyography (sEMG) was used to measure the electrical activities of the right side internal oblique, the adductor longus, the multifidus, and the gluteus maximus muscles. Normalized EMG activities were compared using a paired t-test and the level of significance was set at =.05. The results showed that the EMG activities of the internal oblique (p=.0078), the adductor longus (p=.0007), and the gluteus maximus (p=.0001) muscles were significantly higher when using the magic circle during the Pilates bridging exercise. Also, statistically significant change existed in the multifidus muscle (p=.0106). The bridging exercise, combined with hip adduction using the magic circle, may enhance core stabilization. Therefore, using a magic circle during hip adduction combined with bridging exercise may be recommended usefully for individuals wanting to strength the core muscles. Further research is needed to access the nature of motor control of the Pilates mat exercises and to deliver exercise intervention for lower back pain patients.

  • PDF

A Study on the Core Muscle Activation Characteristics of Suspension Training by Ground Type (지면의 유형에 따른 서스펜션 트레이닝의 코어근육 활성화에 대한 연구)

  • Yoon, Wan-Young
    • Journal of Digital Convergence
    • /
    • v.18 no.2
    • /
    • pp.483-487
    • /
    • 2020
  • In this study, the effects of suspension training according to the types of ground. Fourteen healthy male college students measured for the characteristics of core muscle activity in suspension training on two different types of grounds, normal flat and unstable ground using a gym ball. EMG (Electromyography) was exploited to measure the activity of the core muscles according to the types of the ground. Muscle activity of the abdominal muscles, external oblique muscles, internal oblique muscles, and lower lumbar standing muscles was measured. The variables in analyses were measured by the means of % MVC method to standardize the EMG signal according to the ground type for each core muscle. In order to verify the differences in core muscles according to the type of ground the paired t-tests were performed at the significance level of 0.05 (p<.05). As a result of measuring the activity of the core muscles according to the various types of grounds, the difference between muscle characteristics obtained in two different grounds did not appear to be statistically significant. However, the result is an important clue to reconsider the notion that the training effect on the unstable ground is generally superior to the effect on the stable ground in the core muscle training. The type of ground in the core muscle training has been found not to significantly affect the muscle activation according to the results of this study. Regardless of the type of exercise program, hence, the difference in muscle activation will not be insignificant even with the standardized program strengthening core muscles.

The Effect on Muscle Activation in Trunk and Low-limbs during Squat Exercise on Various Instability Surface (다양한 불안정면에서의 스쿼트 운동이 체간 및 하지 근육 활성도에 미치는 영향)

  • Choi, Nam-Young;Jang, Hee-Seung;Shin, Yun-A
    • 한국체육학회지인문사회과학편
    • /
    • v.54 no.1
    • /
    • pp.505-514
    • /
    • 2015
  • The purpose of this study was to examine the muscle activation in trunk and low-limbs muscle during squat exercise on various instability surface. 10 subject performed squat with 75% of 1 repetition maximum (1RM) on a stable floor, stability blue, stability black and BOSU. Electromyographic (EMG) activity was measured trunk muscle such as rectus abdomina (RA), external obliques (EO), internal obliques (IO), multifidus (MF), and low-limbs muscle such as gluteus maximus (GMA), gluteus medius (GME), biceps femoris (BF), rectus femoris (RF), vastus medialis oblique (VMO), vastus lateral oblique (VLO), medialis gastrocnemius (MG), lateral gastrocnemius (LG), soleus (SOL) and anterior tibia (AT) when ascending and descending squat phase. One-way ANOVA repeated measure with Sheffe used to compare the muscle activity on the stable and unstable surface. Squat with BOSU ball induces higher muscle activity of IO, MF, GMA and GME compared with stability and stability blue and blackduring descending motion. Squat with BOSU ball induces higher muscle activity of GMA compared with stability and stability blue and blackduring ascending motion. This results suggested that BOSU ball in the squat could be effective increasing of trunk stability and gluteal muscle activity. However, there was no difference of squat on low-limb muscle with or without instability.

Comparison Between Right and Left Muscle Activities of Hip and Trunk During Manual Task in Asymmetric Weight-Bearing Posture (비대칭적 입식자세에서 상지 조립 작업 시 체간 및 둔부 근육의 좌우 근활성도 비교)

  • Choung, Ji-Yun;Jeon, Hye-Seon;Lee, Chung-Hwi;Lee, Jeon-Won
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.279-286
    • /
    • 2010
  • The purpose of this study was to compare the electromyographic(EMG) activities of trunk and hip muscles between right and left sides while subjects performed prolonged manual task in asymmetric and symmetric weight-bearing posture. Fifteen healthy male college students were recruited for this study. The subjects were asked to perform bimanual upper extremity task for 6 minutes in two different standing postures. In the symmetric weight-bearing posture, the subjects were standing with evenly distributed body weights to both legs. In the asymmetric weight-bearing posture, the subjects distributed about 90% of their body weight onto their preferred(supporting) leg and 10% of their body weight onto the opposite leg while they were standing. EMG activities of the right and left internal oblique, erector spinae, gluteus maximus, and gluteus medius were measured and normalized as % MVIC. Then the EMG data were statistically analyzed using paired t-tests. The EMG activities of all measured muscles were not significantly different between the right and left side in the symmetrical weight-bearing posture(p>0.05). However, the EMG of the supporting side internal oblique was significantly lower than the opposite side(p<0.05), and the EMG of the erector spinae, gluteus maximus, and gluteus medius were significantly greater on the supporting side(p<0.05). The results of this study support that unbalanced use of right and left muscle possibly causes the changes in muscle length which results in asymmetry of trunk and hip muscles. Furthermore, the uneven weight support onto right and left legs will cause a distortion of viscoelastic ligaments around hip and sacroiliac joints in the long run. Further studies to determine the effect of various manual tasks on the trunk and hip muscles as well as the effect of asymmetrical weight-bearing standing posture on hip and back muscle fatigue may be required.

Effect of Vagus Nerve Electrical Stimulation on Respiratory Muscle Activity and Lung Capacity during Deep Breathing (Case Study) (깊은호흡 시 미주신경 전기자극이 호흡근 활성과 호흡능력에 미치는 효과(사례 연구))

  • Moon, Hyunju
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.2
    • /
    • pp.181-187
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate the activity of respiratory muscle and lung capacity during deep breathing with electrical stimulation of the vagus nerve. Methods: This study was conducted on 30 healthy adults in their 20s. Subjects were randomly performed to deep breathing or deep breathing with vagus nerve electrical stimulation. All subjects' diaphragm and internal oblique muscle activity were measured during deep breathing by electromyography, and lung capacity was measured by spirometry immediately after beep breathing. In the vagus nerve stimulation method, the surface electrode was cut into the left ear and then electrically stimulated using a needle electric stimulator. Results: The activity of diaphragm was significantly increased in deep breathing with vagus nerve electrical stimulation than in deep breathing. However, lung capacity did not show any significant difference according to the condition. Conclusion: Vagus nerve electrical stimulation could induce diaphragm activity more than deep breathing alone. Deep breathing with vagus nerve electrical stimulation may enhance the activity of the respiratory muscles and is expected to be an effective treatment for the elderly or COPD patients with poor breathing ability.

The effects of performing a one-legged bridge with use of a sling on trunk and gluteal muscle activation

  • Cho, Minkwon;Bak, Jongwoo;Chung, Yijung
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.2
    • /
    • pp.70-77
    • /
    • 2016
  • Objective: The purpose of this study was to compare the activation of trunk and gluteal muscles during bridge exercises with a sling (BS), single-legged bridge exercise with a sling (SBS), single-legged bridge exercise (SB), and general bridge exercise (GB). Design: Cross-sectional study. Methods: Twenty-five healthy participants (19 males and 6 females, aged 27.8 [4.78]) voluntarily participated in this study. In the bridging exercise, each subject lifted their pelvis with their legs and feet in contact with the sling or normal surface. The electrical activities of the erector spinae (ES), gluteus maximus (GM), external oblique (EO), and internal oblique (IO) muscles during the bridging exercises on the 2 surfaces were measured using surface electromyography. Subjects practiced each of the four bridge condition three times in random order and average values were obtained. Results: On the ipsilateral side, activities of the IO, EO, and ES during SBS was significantly higher than those during BS, SB, and GB (p<0.05). Activities of the IO and EO during SB was significantly higher than those during BS and GB (p<0.05). On the contralateral side, activities of the GM and EO during SB and SBS was significantly higher than that during BS and GB (p<0.05). These results verify the theory that the use of sling and single leg lift increases the activation trunk and gluteal muscles during bridging exercises. Conclusions: The single-legged bridge exercise with a sling can be recommended as an effective method to facilitate trunk and gluteal muscle activities.