• 제목/요약/키워드: Internal flow characteristic

검색결과 97건 처리시간 0.029초

음향방출법에 의한 발전용 밸브내부 누설의 스펙트럼분석 연구 (A Study on the Spectrum Analyzing of Internal Leak in Valve for Power Plant Using Acoustic Emission Method)

  • 이상국;이선기;이준신;손석만
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.694-699
    • /
    • 2004
  • The purpose of this study is to estimate the availability of acoustic emission method to the internal leak of the valves at nuclear power plants. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. From the comparison of the background noise data with the experimental results as to relation between leak flow and acoustic signal, the minimum leak flow rates that can be detected by acoustic signal was suggested. When the background levels are higher than the acoustic signal, the method described below was considered that the analysis the remainder among the background noise frequency spectrum and the acoustic signal spectrum become a very useful leak detection method. A few experimental examples of the spectrum analysis that varied the background noise characteristic were given.

  • PDF

혼류 펌프의 성능 해석 (Performance prediction of mixed-flow pumps)

  • 오형우;윤의수;정명균;하진수
    • 대한기계학회논문집B
    • /
    • 제22권1호
    • /
    • pp.70-78
    • /
    • 1998
  • The present study has tested semi-empirical loss models for a reliable performance prediction of mixed-flow pumps with four different specific speeds. In order to improve the predictive capabilities, this paper recommends a new internal loss model and a modified parasitic loss model. The prediction method presented here is also compared with that based on two-dimensional cascade theory. Predicted performance curves by the proposed set of loss models agree fairly well with experimental data for a variety of mixed-flow pumps in the normal operating range, but further studies considering 'droop-like' head performance characteristic due to flow reversal in mixed-flow impellers at low flow range near shut-off head are needed.

Foil사이의 미끄러짐을 고려한 Foil Bearing변형 및 내부유동특성해석 (Internal Flow Characteristic Analysis and Deformation of Foil Considering Slip between Foils)

  • 이상훈;원찬식;허남건;전승배
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.482-487
    • /
    • 2001
  • Leaf type foil bearings have been used successfully in many aerospace applications such as air cycle machines, turbocompressors and turboexpander. These applications are characterized by light loads, constant speeds and low to moderate temperatures. But, as system on start-up or shutdown, sliding contact between the shaft and foil surfaces cause wear. So, in present study, to understand pressure-flow characteristics and deformation of foil bearing, flow/structure interaction analysis was used. and using this method, 2D and 3D calculation was peformed for shape of foil bearing to know circumferential direction flow and leakage flow characteristics of axial direction.

  • PDF

액체의 표면 특성을 고려한 3차원 캐버티 내부의 스톡스 유동 특성 연구 (Study on the Stokes' Flow within a Three-Dimensional Cavity Considering Surface Characteristics)

  • 허효원;정원혁;서용권
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.382-386
    • /
    • 2011
  • In this study, a CFD code is developed to perform simulation of the surface and internal flow of a three-dimensional rectangular cavity driven by an external gas flow. Investigated in this study are surface characteristic such as surface tension, surface dilational viscosity(or surface elasticity), and surface viscosity. Visualization of the surface of water is performed to compare with the numerical results obtained with the developed in-house code. We have found that the surface flow is very sensitive to the surface tension and other configurations. The surface flow velocity obtained from the numerical solution is lower than the experimental result.

  • PDF

Analysis of Ring Pack Lubrication

  • Lee, Jae-Seon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제14권9호
    • /
    • pp.928-934
    • /
    • 2000
  • This paper describes a method developed for the simulation of ring pack lubrication characteristic in an internal combustion engine. In general, the quantity of oil supply for piston ring lubrication may be insufficient in filling the entire volume formed at the interference between the piston ring and the cylinder liner. Thus the oil starvation condition should be considered in analyzing piston ring lubrication. In order to reasonably estimate the amount of oil left over on the cylinder liner, the flow rate at the posterior portion of the interface should be calculated with an adequate boundary condition that confirms flow continuity condition. In this analysis, oil starvation and open-end boundary conditions are considered at the inlet and outlet of the piston rings. The lubrication characteristic of each piston ring is obtained by an iterative method with sequential steps. It is revealed that piston rings are operated under oil starvation in most operating cycles and the result under these conditions are quite different from that with the fully-flooded assumption.

  • PDF

점탄성 효과를 가진 사출 유동에 관한 연구 (A Study on the Injection Flow with Viscoelastic Effect)

  • 전언찬;박정우;김수용;이철장;안광우
    • 한국기계가공학회지
    • /
    • 제7권3호
    • /
    • pp.25-29
    • /
    • 2008
  • In this paper, we design internal space in plunger-type low pressure vacuum injection molding machine from numerical study. And we study characteristic of viscoelastic flow for searching injection molding condition. Then the flow analysis was performed using the CAE S/W. The result shows optimal value of nozzle and hole in injection chamber. And we investigated qualitatively relationship between injection pressure and injection mass flow with variable shear rate

  • PDF

화력발전소용 1인치 볼 밸브 유량계수 Cv에 관한 유동해석 및 실험에 관한 연구 (Experiment and Flow Analysis of the Flow Coefficient Cv of a 1 inch Ball Valve for a Thermal Power Plant)

  • 강창원;이중섭;이치우
    • 한국기계가공학회지
    • /
    • 제18권3호
    • /
    • pp.109-115
    • /
    • 2019
  • The purpose of this study was to analyze and test the flow rate of a 1-inch ball valve used in a thermal power plant. To identify the flow-rate characteristics, numerical analysis was conducted and an experimental apparatus of the valve flow rate coefficient was used to compare the flow coefficient Cv values. To determine the internal pressure distribution, the sites of opening ball valves and flow fields were investigated. In particular, a smaller the valve opening resulted in a more complicated the flow field of the ball. The valve flow characteristic test showed that the Cv value and flow rate increased with increasing valve-opening rate and the secondary function was performed. The pressure drop increased as the valve opening rate decreased. In addition, the experimental results for the flow analysis are similar to the numerical analysis results.

Numerical Study of the Snubber of Reciprocating Hydrogen Compressing System

  • Rahman, M. Sq.;Lee, Gyeong-Hwan;Chung, Han-Shik;Jeong, Hyo-Min
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1358-1365
    • /
    • 2008
  • By Computational Fluid Dynamics simulation, general information about an internal gas flow can be achieved. This will be very useful to improve flow inside the pipes and snubber system. Relating with hydrogen compressing system, which plays an important role in hydrogen energy utilization, this method should be a powerful tool to observe the flow quickly and clearly. Flow pressure characteristic analysis of hydrogen gas flowing through the snubber of a reciprocating compressor is presented in this paper. The CFD calculation of pressure pulsation and pressure loss are very close to the experiment. Therefore, consequently development of the better hydrogen compressing system will be observed with better understanding by CFD.

  • PDF

SMART 유동혼합헤더집합체의 동수력 질량 특성 고찰 (Investigation of Hydrodynamic Mass Characteristic for Flow Mixing Header Assembly in SMART)

  • 이규만;안광현;이강헌;이재선
    • 한국압력기기공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.30-36
    • /
    • 2020
  • In SMART, the flow mixing header assembly (FMHA) is used to mix the coolant flowing into the reactor core to maintain a uniform temperature. The FMHA is designed to have enough stiffness so the resonance with reactor internal structures does not occurs during the pipe break and the seismic accidents. Since the gap between the FMHA and the core support barrel assembly is very narrow compared with the diameter of FMHA, the hydrodynamic mass effect acting on the FMHA is not negligible. Therefore the hydrodynamic mass characteristics on the FMHA are investigated to consider the fluid and structure interaction effects. The result of modal analysis for the dry and underwater conditions, the natural frequency of primary vibration mode for the horizontal direction is reduced from 136.67 Hz to 43.76 Hz. Also the result of frequency response spectrum seismic analysis for the dry and underwater conditions, the maximum equivalent stress are increased from 13.89 MPa to 40.23 MPa. Therefore, reactor internal structures located in underwater condition shall consider carefully the hydrodynamic mass effects even though they have sufficient stiffness required for performing its functions under the dry condition.

왕복동식 수소압축기의 흡입통로내 작동유체 유동해석 (Numerical Analysis on the Working Fluid Flow of Suction-passage for Reciprocating Compressor)

  • 이경환;라흐만;심규진;정효민;정한식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권8호
    • /
    • pp.1201-1207
    • /
    • 2008
  • Numerical analysis information will be very useful to improve fluid system. General information about an internal gas flow is presented by numerical analysis approach. Relating with hydrogen compressing system, which have an important role in hydrogen energy utilization, this should be a useful tool to observe the flow quickly and clearly. Flow characteristic analysis, including pressure and turbulence kinetic energy distribution of hydrogen gas coming to the cylinder of a reciprocating compressor are presented in this paper. Suction-passage model is designed based on real model of hydrogen compressor. Pressure boundary conditions are applied considering the real condition of operating system. The result shows pressure and turbulence kinetic energy are not distributed uniformly along the passage of the Hydrogen system. Path line or particles tracks help to demonstrate flow characteristics inside the passage. The existence of vortices and flow direction can be precisely predicted. Based on this result, the design improvement, such as reducing the varying flow parameters and flow reorientation should be done. Consequently, development of the better hydrogen compressing system will be achieved.