• 제목/요약/키워드: Internal fault

검색결과 248건 처리시간 0.033초

웨이브렛 변환 기반 뉴로-펴지를 이용한 변압기 보호계전 알고리즘 (Protective Relaying Algorithm for Transformer Using Neuro-Fuzzy based on Wavelet Transform)

  • 이종범;이명윤
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권5호
    • /
    • pp.242-250
    • /
    • 2005
  • This paper proposes a new protective relaying algorithm using Neuro-Fuzzy and wavelet transform. To organize advanced nuero-fuzzy algorithm, it is important to select target data reflecting various transformer transient states. These data are made of changing-rates of Dl coefficient and RSM value within half cycle after fault occurrence. Subsequently, advanced neuro-fuzzy algorithm is obtained by converging the target data. As a result of applying the advanced neuro-fuzzy algorithm, discrimination between internal fault and inrush is correctly distinguished within 1/2 after fault occurrence. Accordingly, it is evaluated that the proposed algorithm can effectively protect a transformer by correcting discrimination between winding fault and inrushing state.

교류 발전기의 고장 검출 알고리즘에 관한 비교 연구 (A Comparative Study on Fault Detection Algorithm of AC Generator)

  • 박철원;신광철;신명철
    • 전기학회논문지P
    • /
    • 제57권2호
    • /
    • pp.102-108
    • /
    • 2008
  • AC generator plays an important role of power system. The large AC generator fault may lead to large impacts or perturbations in power system. And then the protection of a generator has very important role in maintaining stability in a power system. In present, the DFT(discrete Fourier transform) based RDR(ratio differential relay) had been widely applied to a internal fault of a generator stator winding. But DFT has a serious drawback. In the course of transforming a target signal to frequency domain, time information is lost. DWT uses a time-scale region. This paper proposes an advanced fault detection algorithm using DWT(discrete Wavelet transform) to enhance the drawback of conventional DFT based relaying. To evaluate the performance of the proposed relaying, we used the test data which were sampled with 720 [Hz] per cycle and obtained from ATP(alternative transient program) simulation. And we made a comparative study of conventional DFT based RDR and the proposed relaying.

유기 전압비를 이용한 3권선 변압기 보호계전 알고리즘 (A Three-Winding Transformer Protective Relaying Algorithm Based on the Induced Voltages)

  • 강용철;이병은
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권3호
    • /
    • pp.173-178
    • /
    • 2003
  • This paper proposes a three-winding transformer protective relaying algorithm based on the ratio of the induced voltages (RIV). The RIV of the two windings is the same as the turn ratio for all operating conditions except an internal fault. For a single phase and a three-phase transformer containing the wye-connected windings, the induced voltages of the windings are estimated. For a three-phase transformer containing the delta-connected windings, the induced voltage differences are estimated using the line currents, because the winding currents are practically unavailable. The algorithm can identify the faulted phase and winding if a fault occurs on one phase of a winding. The test results clearly show that the algorithm successfully discriminates internal winding faults from magnetic inrush. The algorithm not only does not require hysteresis data but also can reduce the operating time of a relay.

3차 논리회로의 고정분석 및 검출 (Fault Analysis and Detection of Ternary Logic)

  • 김종오;김영건;김흥수
    • 전자공학회논문지B
    • /
    • 제32B권12호
    • /
    • pp.1552-1564
    • /
    • 1995
  • A fault detecting method of ternary logic is proposed by using the spectral coefficients of the Chrestenson function. Fault detecting conditions are derived for a stuck-at fault in case of single input, multiple inputs and internal lines in the ternary logic. The detecting conditions for min/max bridging faults are also considered. When using this fault analysis method, it is possible to detect faults without the test vector and minimize high volume memory for storing the vector and response data. Thus, the computational complexity for the test vector can be decreased.

  • PDF

보상 알고리즘을 적용한 모선보호용 전류차동 계전기 (A Busbar Current Differential Relay with a Compensating Algorithm)

  • 강용철;윤재성
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권4호
    • /
    • pp.214-220
    • /
    • 2004
  • This paper describes a busbar current differential relay in conjunction with a current transformer(CT) compensating algorithm irrespective of the level of the remanent flux. The compensating algorithm detects the start of first saturation if the third-difference function of the current exceeds the threshold; it estimates the core flux at the first saturation start by inserting the negative value of the third-difference function of the current into the magnetization curve; thereafter, it calculates the core flux during the fault and compensates the distorted current using the magnetization curve. The algorithm estimates the correct secondary current irrespective of the level of the remanent flux and needs no saturation point of the magnetization curve. The proposed relay can improve not only security of the relay on an external fault with CT saturation but sensitivity of the relay on an internal fault; the relay can improve the operating speed on n internal fault with CT saturation. This paper concludes by implementing the relay into a digital signal processor based prototype relay.

보상 알고리즘을 적용한 모선보호용 전류차동 계전기 (A Busbar Current Differential Relay with a Compensating Algorithm)

  • 강용철;윤재성
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권4호
    • /
    • pp.214-214
    • /
    • 2004
  • This paper describes a busbar current differential relay in conjunction with a current transformer(CT) compensating algorithm irrespective of the level of the remanent flux. The compensating algorithm detects the start of first saturation if the third-difference function of the current exceeds the threshold; it estimates the core flux at the first saturation start by inserting the negative value of the third-difference function of the current into the magnetization curve; thereafter, it calculates the core flux during the fault and compensates the distorted current using the magnetization curve. The algorithm estimates the correct secondary current irrespective of the level of the remanent flux and needs no saturation point of the magnetization curve. The proposed relay can improve not only security of the relay on an external fault with CT saturation but sensitivity of the relay on an internal fault; the relay can improve the operating speed on n internal fault with CT saturation. This paper concludes by implementing the relay into a digital signal processor based prototype relay.

웨이브렛 변환기반 뉴로-퍼지를 이용한 변압기 보호계전 알고리즘 (Transformer Protective Relaying Algorithm Using Neuro-Fuzzy based on Wavelet Transform)

  • 이명윤;이종범;홍동석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.607-609
    • /
    • 2004
  • A breakdown occurred in power transformer causes interruption of power transmission. Protective relay should be installed in transformer to detect such a fault. Protective relaying algorithm for transformer must be included a function to discriminate between winding fault and inrushing state. Recently, current differential relay is widely used to protect power transformer. However if inrush occurs in transformer, relay can be tripped by judging as internal fault. New algorithms are required in order to such problem. This study proposes a new protective relaying algorithm using Neuro-Fuzzy inference and wavelet. A variety of transformer transient states are simulated by BCTRAN and HYSDT in EMTP. D1 coefficients of differential current are obtained by wavelet transform. D1 coefficients and RMS of 3-phase primary voltage are used to make a target data and are trained by Nwo-Fuzzy algorithm which distinguishes correctly whether internal fault occurs or not within 1/2 after fault detection. It is evaluated that the results obtained by simulations can effectively protect a transformer by contact discriminating between winding fault and inrushing state.

  • PDF

ANSI 규격에 의한 주상 변압기의 동압력 내력시험에 관한 연구 (The Study of the Design Tests for Current Capability according to ANSI)

  • 김선구;김원만;나대열;노창일;이동준;정흥수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.909-911
    • /
    • 2003
  • The almost pole transformers are constructed with tank, cover, clamp etc., that contains the insulation oil, core, coil, terminals, bus and the other accessories. If some fault current will be flown by some trouble or accident, interior pressure of the transformer shall be very quickly rise, and mechanical components or insulation oil from the transformer enclosure shall be propelled or dropped from the tank. For the prevention of the above accident, recently the pole transformers should be done 'the Design Tests for Fault Current Capability' according to ANSI C57.12.20(1997) There are two tests method in this standard, Test Number I with a high current arcing fault, without internal fusible elements, shall be conducted on rack enclosure with its minimum designed air space. Test Number II with an internal fusible element, shall be conducted on each enclosure diameter utilizing the internal fusible elements. KEPCO recently request to be done the 'Design Tests for Fault Current Capability' for pole transformers according to KEPCO's standard ES141-$533{\sim}545$, PS141-$482{\sim}518$ and RS141-$611{\sim}628$ that is same with Test Number I of ANSI C57.12.20.

  • PDF

양산단층 주 단층대의 발달특성 : 울산광역시 울주군 두동면 천전리 일대의 노두를 중심으로 (Characteristics of the Main Fault Zone Developed Along Yangsan Fault : On the Outcrop of Cheonjeon-ri, Dudong-myeon, Ulju-gun, Ulsan, Korea)

  • 류충렬;천영범
    • 암석학회지
    • /
    • 제28권4호
    • /
    • pp.347-357
    • /
    • 2019
  • 한반도 동남부에 발달하는 양산단층의 주 단층대가 울산시 울주군 두동면 천전리 일대에서 확인되었다. 단층대는 폭 약 100 m에 달하며, 주로 남-북 방향으로 거의 수직에 가까운 고각의 단층대를 이루고 있다. 주 단층대는 주로 남-북 방향의 단층비지 및 단층각력과 함께 이들에 둘러싸인 모암의 렌즈들로 구성된다. 고각의 전단면에서 주로 관찰되는 단층조선은 거의 수평으로 주향이동운동이 가장 우세하게 단층대에 남아 있다. 단층전단감각에 의하면 대부분 우향의 주향이동운동이 우세하다. 동시에 동측으로 중각으로 경사하는 소규모 단층들이 고각의 전단면들을 자르며, 동측의 상반이 서쪽으로 이동한 역단층운동을 보이기도 하여, 주 운동인 우향의 주향이동 이후에 동-서 방향의 압축에 의한 역단층운동이 후속하였음을 지시하고 있다. 또한, 주 단층대 내에는 주로 남-북 방향인 단층대와는 달리 북동-남서 내지는 동-서 방향에 가까운 단층대가 국지적으로 발달하고 있다. 이들은 연속적인 우향의 전단변형의 존재를 지시하는 비대칭 습곡과 함께 발달하고 있음이 특징적이다. 따라서 주 단층대는 우향의 연속적인 변형효과와 후기의 동-서 압축에 의한 효과까지 중첩되어 매우 복잡한 단층대의 기하학적인 양상을 보이고 있다. 이들과 함께 단층대를 부정합으로 피복하는 하성역층 또한 단층운동에 의해 잘려져 있어, 제4기 단층운동의 존재를 지시하고 있다. 이들 제4기 단층은 단층대의 중심부이자 서쪽의 유천층군 화산암과 동쪽의 하양층군 퇴적암이 접하는 경계부 단층면 근처에서 발달하고 있다. 따라서 양산단층의 주 단층대와 단층핵 부분의 파악이 제4기 단층과 활성단층을 찾는데 중요함을 보여주는 좋은 예라고 판단된다.

고장전류를 이용한 동기 발전기 보호 (Synchronous Generator Protection using Fault Currents)

  • 박철원;안준영;이상성;신명철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.399-401
    • /
    • 2006
  • This paper proposes a synchronous generator protection algorithm using Discrete Wavelet Transform for detection of fault currents. The proposed technique is implemented by using the C language and the Wavemenu of MATLAB Toolbox, and consists of normal state and internal fault state. The effectiveness of proposed method is demonstrated by MATLAB simulation package for synchronous generator, which collects the balanced and unbalanced fault currents through simulation.

  • PDF