• Title/Summary/Keyword: Internal energy

Search Result 2,135, Processing Time 0.036 seconds

Protection for a Wind Turbine Generator in a Large Wind Farm

  • Zheng, Tai-Ying;Kim, Yeon-Hee;Kang, Yong-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.466-473
    • /
    • 2011
  • This paper proposes a protection algorithm for a wind turbine generator (WTG) in a large wind farm. To minimize the outage section, a protection relay for a WTG should operate instantaneously for an internal fault or a connected feeder fault, whereas the relay should not operate for an internal fault of another WTG connected to the same feeder or an adjacent feeder fault. In addition, the relay should operate with a delay for an inter-tie fault or a grid fault. An internal fault of another WTG connected to the same feeder or an adjacent feeder fault, where the relay should not operate, is determined based on the magnitude of the positive sequence current. To differentiate an internal fault or a connected feeder fault from an inter-tie fault or a grid fault, the phase angle of the negative sequence current is used to distinguish a fault type. The magnitude of the positive sequence current is then used to decide either instantaneous operation or delayed operation. The performance of the proposed algorithm is verified under various fault conditions with EMTP-RV generated data. The results indicate that the algorithm can successfully distinguish instantaneous operation, delayed operation, or non-operation depending on fault positions and types.

Development of Automatic Reactor Internal Vibration Monitoring System Using Fuzzy Peak Detection and Vibration Mode Decision Method

  • Kang, Hyun-Gook;Seong, Poong-Hyun;Park, Heui-Youn;Lee, Cheol-Kwon;Koo, In-Soo
    • Nuclear Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.8-16
    • /
    • 1998
  • In this work a method to detect the vibrational peak and to decide the vibrational mode of detected peak for core internal vibration monitoring system which is particularly concerned on the core support barrel (CSB) and fuel assemblies is developed. Flow induced vibration and aging process in the reactor internals cause unsoundness of the internal structure. In order to monitor the vibrational status of core internal, signals from the ex-core neutron detectors are transformed into frequency domain. By analyzing transformed frequency domain signal, an analyst can acquire the information on the vibrational characteristics of the structures, i.e., vibration frequencies of each component, vibrational level, modes of vibration, and the causes of the abnormal vibration, if any. This study is focused on the development of the automated monitoring system. Several methods are surveyed to define the peaks in power spectrum and fuzzy theory is used to automatic detection of the vibrational peaks. Fuzzy algorithm is adopted to define the modes of vibration using the peak values from fuzzy peak recognition, phase spectrum, and coherence spectrum.

  • PDF

A Simulation Study of the Effect of Microstructural Design on the Performance of Solid Oxide Fuel Cells With Direct Internal Reforming (내부개질형 고체산화물 연료전지의 마이크로 전극구조가 성능에 미치는 영향에 관한 해석적 연구)

  • Sohn, Sangho;Nam, In Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.401-412
    • /
    • 2013
  • The paper is to study on the simulation of the micro/macroscale thermo-electrochemical model of a single cell of anode-supported SOFC with direct internal reforming. The coupled heat and mass transport, electrochemical and reforming reactions, and fluid flow were simultaneously simulated based on mass, energy, charge conservation. The micro/macroscale model first calculates the detailed electrochemical and direct internal reforming processes in porous electrodes based on the comprehensive microscale model and then solve the macroscale processes such as heat and mass transport, and fluid flow in SOFCs with assumption of fully-developed flow in gas channel. The simulation results evaluate the overall performance by analyzing distributions of mole fraction, current density, temperature and microstructural design in co/counter flow configurations.

An experimental study on the effects of internal tubular coatings on mitigating wax deposition in offshore oil production

  • Jung, Sun-Young;Kang, Pan-Sang;Lim, Jong-Se
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1333-1339
    • /
    • 2014
  • As the demand for petroleum resources increases, and oilfields on lands and in shallow-sea become exhausted, the areas for oil production are expanding to the deep sea and therefore technologies for flow assurance are coming into the highlight. In low temperature environment such as the deep sea, wax is accumulated and prevents stable oil production. Therefore, the development of flow assurance technologies is required. Wax is precipitated in crystalline form when the oil temperature decreases below the wax appearance temperature; it then accumulates on the inner walls of pipelines causing blockages. In particular, in subsea pipelines, which have a large surface contact area with the surrounding seawater, wax deposition problems are frequent. The internal tubular coating can effectively reduce wax deposition without pausing oil production when the coating is appropriately designed. This study carried out wax deposition tests on a number of internal tubular coatings under single flow conditions. The results were analyzed for the effects that the physical properties of the coatings had on wax deposition.

Surface Treatment of Eggshells with Low-Energy Electron Beam

  • Kataoka, Noriaki;Kawahara, Daigo;Sekiguchi, Masayuki
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.1
    • /
    • pp.8-13
    • /
    • 2021
  • Background: Salmonella enteritidis (SE) was the main cause of the pandemic of foodborne salmonellosis. The surface of eggs' shells can be contaminated with this bacterium; however, washing them with sodium hypochlorite solution not only reduces their flavor but also heavily impacts the environment. An alternative to this is surface sterilization using low-energy electron beam. It is known that irradiation with 1 kGy resulted in a significant 3.9 log reduction (reduction factor of 10,000) in detectable SE on the shell. FAO/IAEA/WHO indicates irradiation of any food commodity up to an overall average dose of 10 kGy presents no toxicological hazard. On the other hand, the Food and Drug Administration has deemed a dose of up to 3 kGy is allowable for eggs. However, the maximum dose permitted to be absorbed by an edible part (i.e., internal dose) is 0.1 Gy in Japan and 0.5 Gy in European Union. Materials and Methods: The electron beam (EB) depth dose distribution in the eggshell was calculated by the Monte Carlo method. The internal dose was also estimated by Monte Carlo simulation and experimentation. Results and Discussion: The EB depth dose distribution for the eggshells indicated that acceleration voltages between 80 and 200 kV were optimal for eggshell sterilization. It was also found that acceleration voltages between 80 and 150 kV were suitable for reducing the internal dose to ≤ 0.10 Gy. Conclusion: The optimum irradiative conditions for sterilizing only eggshells with an EB were between 80 and 150 kV.

Analysis of leakage factors affecting ECV performance in variable compressor

  • Mahmud, Md. Iqbal;Cho, Haeng Muk
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.183-188
    • /
    • 2014
  • Solenoid operated electromagnetic control valve (ECV) using in an external variable displacement swash plate type compressor is widely used for air conditioning control system because of its low energy consumption and high efficient characteristics. ECV controls the entire vehicle air conditioning system by means of a pulse width modulation (PWM) system that supplied from an external controller. Different pressure ports located within ECV has important functions to control the air/refrigerant flow through its internal passages. The flow paths are preciously maintained with acceptable ranges of leakage (gap) between the parts inside it which is followed by effective design and critical dimensioning of its internal features. Therefore, it saves energy losses from the solenoid operation as well as ensures the balance of forces within it. The research paper highlights analysis of the leakages (at different pressure ports) and dimensioning tolerance factors that affects the ECV performance.

Fabrication of Carbon-dispersed $UO_3$ Microspheres by an Internal Gelation

  • Lee, Jung-Won;Lee, Young-Woo;Shigeru Yamagishi;Akinori Itoh;Toru Ogawa
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.662-667
    • /
    • 1995
  • An internal gelation process was adopted for the fabrication of carbon-dispersed UO$_3$ microspheres which will be fed to the fabrication for uranium nitride microsphere fuels by the carbothermic reduction. For investigating the proper process conditions, a composition range of feed solution for preparing good UO$_3$ gel spheres was firstly defined by observing the gelation behavior. Within the defined solution compositions, carbon-dispersed microspheres were prepared and carbon distribution in microspheres were observed by SEM. The results showed that production of good carbon-dispersed microspheres was possible, and the most of carbon were evenly distributed in the microspheres although large carbon-rich aggregates were sparsely existent.

  • PDF

Viability of HVAC System for Energy Conservation in High Density Internal-load Dominated Buildings (고밀도 내부부하 중심 건물의 에너지 절약적 공조방식에 대한 연구)

  • Cho, Jin-Kyun;Jeong, Cha-Su;Kim, Byung-Seon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.530-537
    • /
    • 2010
  • With the advancement of technology, the density of IT equipment, heat load and power consumption continue to increase in high density internal-load dominated buildings as datacenters. To improve the HVAC system's energy performance and efficiency, there is a need to find methods of using outside air. Through cooling tower control that is based on outside wet-bulb temperature, the water-side economizer made it possible to achieve a maximum energy performance improvement of about 16.6% over the basic chilled water system, whereas the air-side economizer, through control based on outdoor air enthalpy, made it possible to achieve about 42.4% improvement.

B-Spline Representation of Active Contours by Dynamic Programming (동적 프로그래밍에 의한 활성 윤곽선의 B-스플라인 표현)

  • Kim, Dong-Geun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.7
    • /
    • pp.1962-1969
    • /
    • 1999
  • Active contours are deformable energy minimizing curves controlled by internal energy and external energy. The internal energy is constraint to preserve a smooth curve, and the external energy guides the curve towards image features. B-spline representation of active contours can be of great benefits in the segmentation and description whose shape is characterized by its defining polygon or control points. Menet et al proposed B-spline representation of active contours based on dynamic programming. The method is simple and efficient by comparing over finite difference method.

  • PDF

Study on visualization of water mixing flows in a digester equipped with a vertical impeller by using radiotracers

  • Jung, Sung-Hee;Moon, Jinho;Park, Jang-Guen;Lim, Jae Cheong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.170-177
    • /
    • 2020
  • A mixer with a new concept design has been adapted into water treatment plants. It reportedly cuts down the energy consumption of the mixer by the new mixer, which moves vertically and creates internal flows toward its bottom. However, no experimental observations have been made on the internal flow caused by a vertical impeller. In this study, a radiotracer experiment, radioactive particle tracking (RPT) technique, and particle image velocimetry (PIV) were carried out to visualize the flow in the mixer, and compared to each other. The results show that the flow patterns from these techniques are very similar to each other, and the performance of the mixer was good enough to mix the inner materials.