• Title/Summary/Keyword: Internal electric field

Search Result 139, Processing Time 0.024 seconds

Effect of Ohmic Heating on External and Internal Structure of Starches (옴가열이 전분의 외부와 내부 구조에 미치는 영향)

  • Cha, Yun-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.1
    • /
    • pp.126-133
    • /
    • 2015
  • Ohmic heating uses electric resistance heat which occurs equally and rapidly inside food when the electrical current is transmitted into. Prior to the study, we have researched the potato starch's thermal property changes during ohmic heating. Comparing with conventional heating, the gelatinization temperature and the range of potato starch treated by ohmic heating are increased and narrowed respectively. This result is appeared equally at wheat, corn and sweet potato starch. At this study, we treated potato, wheat, corn and sweet potato starch by ohmic/conventional method and observed change of external structure by microscope and internal structure by X-ray diffractometer. Conventional heated at $55^{\circ}C$ potato starch was not external structural changes. But ohmic heated potato starch is showed largely change. Some small size starch particle were broken or small particles are made of larger particle together or small particles caught up in the large particle. Changes in ohmic heated potato starch at $60^{\circ}C$ was greater. The inner matter came to an external particle burst inside and only the husk has been observed. The same change was observed in the rest of the starch. The change of internal structure of potato starch was measured using X-ray diffraction patterns. There was no significant difference between ohmic and conventional heating at $55^{\circ}C$. But almost every peak has disappeared ohmic at $60^{\circ}C$. Especially $5.4^{\circ}$ peak to represent the type B was completely gone. When viewed from the above results, external changes with change in the internal crystal structure of the starch particles were largely unknown to appear. In conclusion, during ohmic heating changes of starch due to the electric field with a change in temperature by the heating was found to have progressed at the same time.

Mn-Modified PMN-PZT [Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3] Single Crystals for High Power Piezoelectric Transducers

  • Oh, Hyun-Taek;Lee, Jong-Yeb;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.150-157
    • /
    • 2017
  • Three types of piezoelectric single crystals [PMN-PT (Generation I $[Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3]$), PMN-PZT (Generation II $[Pb(Mg_{1/3}Nb_{2/3})O_3-Pb(Zr,Ti)O_3]$), PMN-PZT-Mn (Generation III)] were grown by the solid-state single crystal growth (SSCG) method, and their dielectric and piezoelectric properties were measured and compared. Compared to (001) PMN-PT and PMN-PZT single crystals, the (001) PMN-PZT-Mn single crystals exhibited a higher transition temperature between the rhombohedral and tetragonal phases ($T_{RT}=144^{\circ}C$), as well as a higher coercive electric field ($E_C=6.3kV/cm$) and internal bias field ($E_I=1.6kV/cm$). The (011) PMN-PZT-Mn single crystals showed the highest coercive electric field ($E_C=7.0kV/cm$), and the highest stability of $E_C$ and $E_I$ during 60 cycles of polarization measurement. These results demonstrate that both Mn doping (for higher electromechanical quality factor ($Q_m$)) and a (011) crystallographic orientation (for higher coercive electric field and stability) are necessary for high power transducer applications of these piezoelectric single crystals. Specifically, the (011) PMN-PZT-Mn single crystal (Gen. III) had the highest potential for application in the fields of SONAR transducers, high intensity focused ultrasound (HIFU), ultrasonic motors, and others.

A Study on Joule Heating Simulation Method to Prevent Sensitivity Current Trip of Electric Vehicle Charger (전기자동차 충전기의 누전차단기 감도 전류 Trip 방지를 위한 Joule Heating 시뮬레이션 방안연구)

  • Lee, Beoung-Kug;Eo, Ik-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.150-159
    • /
    • 2021
  • This study aimed to prevent inconvenience to electric vehicle users caused by an interruption of charging by the earth leakage breaker trip that occurs during charging. As a field case study, it was confirmed that during the battery charger failure type, leakage current measurement experiment by vehicle type, and leakage current breaker operation experiment, the internal temperature of the charger rose to more than 60 ℃ in summer, and the earth leakage circuit breaker stopped charging by tripping at 80% of the rated sensitivity current. Through Joule heating modeling, 32A is energized at the reference temperature of 30 ℃ at the initial time t=0 (s). After t=3000 (s), the heat generated around the charging part of the earth leakage breaker increased to 32.4 ℃. The temperature and time factors correlated with the amount of heat generated according to the statistical verification tool with a correlation coefficient of 0.97. Overall, it is possible to prevent the leakage breaker sensitivity current trip due to an increase in temperature inside the charger in summer by performing a Joule heating simulation according to the material of the charging case, the arrangement of the internal wiring, and the dielectric medium when developing the charger device.

Electric Field Effect on Numerical Dosimetry for Wireless Power Transfer System (무선전력전송의 조사량 평가 시 전기장 영향)

  • Park, Sang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.5
    • /
    • pp.499-505
    • /
    • 2015
  • The coupling effect of electric fields incident on the biological object is investigated in regards to dosimetry for a wireless power transfer(WPT) system using electromagnetic resonance phenomenon. The internal electric fields induced a biological sphere model exposed to a magnetic dipole are calculated with the finite-difference time-domain(FDTD) method considering both incident electric and magnetic fields, the impedance method considering only incident magnetic fields, and theoretical analysis. The results represent that the electric coupling effect on a biological object nearby the WPT system should be considered to conduct exact dosimetry.

A Study on the partial Discharge Characteristics according to the Distribution pattern of voids within LDPE (보이드 분포 형태에 따른 LDPE의 부분 방전 특성 연구)

  • Shin, Doo-Seong;Jeon, Seung-Ik;Lee, Jun-Ho;Yun, Do-Hong;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1081-1084
    • /
    • 1995
  • Internal voids located within an insulation will arise partial discharge that causes local breakdown and even the entire insulation breakdown. For HV apparatuses, it is usual case that several voids are formed within non-uniform electric field condition rather than single void within uniform field, which can be solved analitically. The purpose of this work is to study partial discharge and breakdown characteristics of an insulation according to the distribution pattern of two disc-type voids that are located within non-uniform field. The results from numerical field analysis and experiments show that the electric field within the voids decreases as they are arranged more serially, which accordingly results in the increase of partial discharge inception field(PDIF) much higher than that of single void model. With parallel arranged voids, PDIF is almost the same as that of single void model. On the other hand, AC breakdown strength decreases as voids are arranged more serially, which is a natural result considering the reduction of effective insulation thickness. For parallel voids, this effect cannot he noticed where as they show different pattern compared with single void and serial void models in $\Phi$-Q-N analysis. Considering these results may leads us to the conclusion that, in the evaluation of insulating products through PD test, it is not sufficient to determine only PDIV or existence of PD at predetermined voltage level. We could evaluate more accurately by considering all the available data such as PDIV, PD magnitude, PD occurring phase, number of PD pulses, and etc.

  • PDF

Film Thickness Dependence of Ac High Field for Low Density Polyethylene (저밀도 폴리에틸렌의 고전계 파형에 대한 필름 두께 의존성)

  • Choi, Yong-Sung;Wee, Sung-Dong;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.45-49
    • /
    • 2008
  • Polyethylene is widely used as the insulator for power cable. To investigate the conduction mechanism for power cable insulation under ac high field, it is very important to acquire the dissipation current under actual running field. Recently, we have developed the unique system, which make possible to observe the nonlinear dissipation current waveform. In this system, to observe the nonlinear properties with high accuracy, capacitive current component is canceled by using inverse capacitive current signal instead of using the bridge circuit for canceling it. We have already reported that the dissipation currents of $40\;{\mu}m$ thick LDPE film at 10 kV/mm and over 140 Hz, it starts to show nonlinearity and odd number's harmonics were getting large. To investigate the conduction mechanis ms in this region, especially space charge effect, various kinds of estimation, such as time variations of instantaneous resistivity for one cycle, FFT spectra of dissipation current waveforms and so on, has been examined. As the results of these estimations, it was found that the dissipation current will depend on not only the instantaneous value of electric field but also the time differential of applied electric field due to taking a balance between applied field and internal field. Furthermore, two large peaks of dissipation current for each half cycle were observed under certain condition. In this paper, to clarify the reason why it shows two peaks for each half cycle, the film thickness dependences of dissipation current waveforms were observed by using the three different thickness LDPE films.

  • PDF

THE STABILITY IN AN INCLINED LAYER OF VISCOELASTIC FLUID FLOW OF HYDROELECTRIC NATURAL CONVECTION

  • El-Bary, A.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.2
    • /
    • pp.17-27
    • /
    • 2005
  • The problem of the onset stability in an inclined layer of dielectric viscoelastic fluid (Walter's liquid B') is studied. The analysis is made under the simultaneous action of a normal a.c. electric field and the natural convection flow due to uniformly distributed internal heat sources. The power series method used to obtain the eigen value equation which is then solved numerically to obtain the stable and unstable solutions. Numerical results are given and illustrated graphically.

  • PDF

A Research Trend on Film Thickness Dependence of Ac High Feld for Low Density Polyethylene (저밀도 폴리에틸렌을 위한 고전계 파형의 필름 두께의존성에 관한 연구 동향)

  • Jung, Sung-Chan;Rho, Jung-Hyun;Lee, Joo-Hong;Hwang, Jong-Sun;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1988-1989
    • /
    • 2007
  • Polyethylene is widely used as the insulator for power cable. To investigate the conduction mechanism for power cable insulation under ac high field, it is very important to acquire the dissipation current under actual running field. Recently, we have developed the unique system, which make possible to observe the nonlinear dissipation current waveform. In this system, to observe the nonlinear properties with high accuracy, capacitive current component is canceled by using inverse capacitive current signal instead of using the bridge circuit for canceling it. We have already reported that the dissipation currents of $40\;{\mu}m$ thick LDPE film at 10 kV/mm and over 140 Hz, it starts to show nonlinearity and odd number's harmonics were getting large. To investigate the conduction mechanis ms in this region, especially space charge effect, various kinds of estimation, such as time variations of instantaneous resistivity for one cycle, FFT spectra of dissipation current waveforms and so on, has been examined. As the results of these estimations, it was found that the dissipation current will depend on not only the instantaneous value of electric field but also the time differential of applied electric field due to taking a balance between applied field and internal field. Furthermore, two large peaks of dissipation current for each half cycle were observed under certain condition. In this paper, to clarify the reason why it shows two peaks for each half cycle, the film thickness dependences of dissipation current waveforms were observed by using the three different thickness LDPE films.

  • PDF

Surface Discharge Characteristics Study on the Laminated Solid Insulator in Quasi-Uniform Electric Field with Dry Air

  • Min, Gyeong-Jun;Bae, Sungwoo;Kang, Byoung-Chil;Park, Won-Zoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.603-609
    • /
    • 2015
  • Dry air is an excellent alternative to $SF_6$ gas and is used as an insulation gas in Eco-friendly Gas Insulated Switchgears (EGISs), which has gained popularity in industry. Solid insulators in EGIS play an important role in electrical insulation. On the other hand, surface discharge can occur easily when solid insulators are used. This paper explored the surface discharge characteristics on the structure of three-layered laminated solid insulators to elevate the flashover voltage. A laminated solid insulator was inserted after the quasi-uniform electric field was formed in the test chamber. Dry air was then injected to set the internal pressure to 1 ~ 6 atm, and the AC voltage was applied. When identical solid insulators were stacked, the surface discharge characteristics were similar to those of a single solid insulator. On the other hand, the flashover voltage rose when the middle part was thicker and had lower permittivity than the top and bottom parts in the laminated solid insulator. Based on experimental results, when stacking a solid insulator in three layers, the middle part of the solid insulator should be at least four times as thick as the top and bottom parts and have lower permittivity than the others. In addition, the flashover voltage increased with increasing gas pressure on the surface of the laminated solid insulator due to the gas effect. This study may allow insulation design engineers to have useful information when using dry air for the insulation gas where the surface discharge can occur.

Vulnerability Analysis of Network Communication Device by Intentional Electromagnetic Interference Radiation (IEMI 복사에 의한 네트워크 통신 장비의 취약성 분석)

  • Seo, Chang-Su;Huh, Chang-Su;Lee, Sung-Woo;Jin, In-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.44-49
    • /
    • 2018
  • This study analyzed the Vulnerability of Network Communication devices when IEMI is coupled with the Network System. An Ultra Wide Band Generator (180 kV, 700 MHz) was used as the IEMI source. The EUTs are the Switch Hub and Workstation, which are used to configure the network system. The network system was monitored through the LAN system configuration, to confirm a malfunction of the network device. The results of the experiment indicate that a malfunction of the network occurs as the electric field increases. The data loss rate increases proportionally with increasing radiating time. In the case of the Switch Hub, the threshold electric field value was 10 kV/m for all conditions used in this experiment. The threshold point causing malfunction was influenced only by the electric field value. The correlation between the threshold point and pulse repetition rate was not found. However, in case of the Workstation, it was found that as the pulse repetition rate increases, the equipment responds weakly and the threshold value decreases. To verify the electrical coupling of the EUT by IEMI, current sensors were used to measure the PCB line inside the EUT and network line coupling current. As a result of the measurement, it can be inferred that when the coupling current due to IEMI exceeds the threshold value, it flows through the internal equipment line, causing a malfunction and subsequent failure. The results of this study can be applied to basic data for equipment protection, and effect analysis of intentional electromagnetic interference.