• Title/Summary/Keyword: Internal Processes

Search Result 735, Processing Time 0.036 seconds

Oceanic Pycnocline Depth Estimation from SAR Imagery

  • Yang, Jingsong;HUANG, Weigen;XIAO, Qingmei;ZHOU, Chenghu;ZHOU, Changbao;HSU, Mingkuang
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.304-306
    • /
    • 2003
  • Oceanic pycnocline depth is usually obtained from in situ measurements. As ocean internal waves occur on and propagate along oceanic pycnocline, it is possible to estimate the depth remotely. This paper presents a method for retrieving pycnocline depth from synthetic aperture radar (SAR) imagery where internal waves are visible. This model is constructed by combining a two-layer ocean model and a nonlinear internal wave model. It is also assumed that the observed groups of internal wave packets on SAR imagery are generated by local semidiurnal tides. Case study in East China Sea shows a good agreement with in situ CTD data.

  • PDF

Assessment of Internal Radiation Dose Due to Inhalation of Particles by Workers in Coal-Fired Power Plants in Korea (국내 석탄화력발전소 내 작업종사자의 입자 흡입에 따른 내부피폭 방사선량 평가)

  • Do Yeon Lee;Yong Ho Jin;Min Woo Kwak;Ji Woo Kim;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.2
    • /
    • pp.161-172
    • /
    • 2023
  • Coal-fired power plants handle large quantities of coal, one of the most prominent NORM, and the coal ash produced after the coal is burned can be tens of times more radioactive than the coal. Workers in these industries may be exposed to internal exposure by inhalation of particles while handling NORM. This study evaluated the size, concentration, particle shape and density, and radioactivity concentrations of airborne suspended particles in the main processes of a coal-fired power plant. Finally, the internal radiation dose to workers from particle inhalation was evaluated. For this purpose, airborne particles were collected by size using a multi-stage particle collector to determine the size, shape, and concentration of particles. Samples of coal and coal ash were collected to measure the density and radioactivity of particles. The dose conversion factor and annual radionuclide inhalation amount were derived based on the characteristics of the particles. Finally, the internal radiation dose due to particle inhalation was evaluated. Overall, the internal radiation dose to workers in the main processes of coalfired power plants A and B ranged from 1.47×10-5~1.12×10-3 mSv y-1. Due to the effect of dust generated during loading operations, the internal radiation dose of fly ash loading processes in both coal-fired power plants A and B was higher than that of other processes. In the case of workers in the coal storage yard at power plants A and B, the characteristic values such as particle size, airborne concentration, and working time were the same, but due to the difference in radioactivity concentration and density depending on the origin of the coal, the internal radiation dose by origin was different, and the highest was found when inhaling coal imported from Australia among the five origins. In addition, the main nuclide contributing the most to the internal radiation dose from the main processes in the coal-fired power plants was thorium due to differences in dose conversion factors. However, considering the external radiation dose of workers in coal-fired power plants presented in overseas research cases, the annual effective dose of workers in the main processes of power plants A and B does not exceed 1mSv y-1, which is the dose limit for the general public notified by the Nuclear Safety Act. The results of this study can be utilized to identify the internal exposure levels of workers in domestic coal-fired power plants and will contribute to the establishment of a data base for a differential safety management system for NORM-handling industries in the future.

A Modeling Approach to Integrate Business Processes and Data Requirements (업무 프로세스와 데이터 요구사항의 통합 모델링)

  • Jang, Mu-Gyeong
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.04a
    • /
    • pp.329-338
    • /
    • 2011
  • Business processes are often of long duration, and include internal worker's decision making, which makes business processes to be exposed to many exceptional situations. These properties of business processes makes it difficult to design processes to support uncertainties from internal or external environments. The behavioral properties of business processes mainly depends on the data aspects of business processes. To formalize the data aspect of process modeling, this paper proposes a graph-based model, called Data Dependency Graph (DDG), constructed from dependency relationships specified between business data. The paper also defines a mechanism of describing a set of mapping rules that generates a process model semantically equivalent to a DDG, which is accomplished by allocating data dependencies to component activities.

  • PDF

Analysis of Principal Stresses of O-Ring under Uniform Deformation and Internal Pressure by Stress Freezing Method (응력동결법에 의한 고압기밀용 오링의 주응력 해석)

  • Nam, Jeong-Hwan;Hawong, Jai-Sug;Kim, Young-Tak;Park, Sung-Han;Shin, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.150-154
    • /
    • 2008
  • In this research, stress components and principal stresses of O-ring under internal pressure and under uniform squeeze rate were obtained from the stress freezing method of photoelastic experiment and photoelastic experimental Hybrid method for 3-dimensional problems. The obtaining processes of those were introduced. It was certified that the processes of those are effective for the 3-dimensional stress analysis of structures. Stress freezing method, the obtaining processes of those and photoelastic experimental hybrid method were effectively applied to the stress analysis of O-ring made from rubber that under uniform deformation and internal pressure. Stress components and principal stress of Oring under uniform squeeze rate and under internal pressure were analyzed.

  • PDF

Effect of different tooth preparation designs on the marginal and internal fit discrepancies of cobalt-chromium crowns produced by computer-aided designing and selective laser melting processes

  • Yu, Na;Dai, Hong-Wei;Tan, Fa-Bing;Song, Jin-Lin;Ma, Chao-Yi;Tong, Xue-Lu
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.5
    • /
    • pp.333-342
    • /
    • 2021
  • PURPOSE. To evaluate the impact of five different tooth preparation designs on the marginal and internal fit discrepancies of cobalt-chromium (CoCr) crowns produced by computer-aided designing (CAD) and selective laser melting (SLM) processes. MATERIALS AND METHODS. Five preparation data were constructed, after which design crowns were obtained. Actual crowns were fabricated using an SLM process. After the data of actual crowns were obtained with structural light scanning, intaglio surfaces of the design crown and actual crown were virtually superimposed on the preparation. The fit-discrepancies were displayed with colors, while the root means square was calculated and analyzed with one-way analysis of variance (ANOVA), Tukey's test or Kruskal-Wallis test (α = .05). RESULTS. The marginal or internal color-coded images in the five design groups were not identical. The shoulder-lip and sharp line angle groups in the CAD or SLM process had larger marginal or internal fit discrepancies compared to other groups (P < .05). In the CAD process, the mean marginal and internal fit discrepancies were 10.0 to 24.2 ㎛ and 29.6 to 31.4 ㎛, respectively. After the CAD and SLM processes, the mean marginal and internal fit discrepancies were 18.4 to 40.9 ㎛ and 39.1 to 47.1 ㎛, respectively. The SLM process itself resulted in a positive increase of the marginal (6.0 - 16.7 ㎛) and internal (9.0 - 15.7 ㎛) fit discrepancies. CONCLUSION. The CAD and SLM processes affected the fit of CoCr crowns and varied based on the preparation designs. Typically, the shoulder-lip and sharp line angle designs had a more significant effect on crown fit. However, the differences between the design groups were relatively small, especially when compared to fit discrepancies observed clinically.

Effect of Conductive Additives on $FeS_2$ Cathode ($FeS_2$ 양극에 미치는 전도성 첨가제의 영향)

  • Choi, Yu-Song;Cheong, Hae-Won;Kim, Ki-Youl;Cho, Sung-Baek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.224-230
    • /
    • 2012
  • Thermal batteries have excellent mechanical robustness, reliability, and long shelf life. Due to these characteristics as well as their unique activation mechanism, thermal batteries are widely adopted as military power sources. Li(Si)/$FeS_2$ thermal batteries, which are used mostly in these days, use LiCl-KCl and LiBr-LiCl-LiF as molten salt electrolyte. However, it is known that Li(Si)/$FeS_2$ thermal batteries have high internal resistance. Especially, $FeS_2$ cathode accounts for the greater part of internal resistance in unit cell. Many efforts have been put into to decrease the internal resistance of thermal batteries, which result in the development of new electrode material and new electrode manufacturing processes. But the applications of these new materials and processes are in some cases very expensive and need complicated additional processes. In this study, internal resistance study was conducted by adding carbon black and carbon nano-tube, which has high electron conductivity, into the $FeS_2$ cathode. As a results, it was found that the decrease of internal resistance of $FeS_2$ cathode by the addition of carbon black and carbon nano-tube.

On-line process identification and autotuning for unstable processes (불안정한 공정에 대한 온라인 공정 확인 및 자동 조절)

  • 곽희진;성수환;이인범
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.832-835
    • /
    • 1997
  • In this paper, we first analyze the structural limitation of the conventional PID controller in controlling unstable processes through mathematical proof. To overcome this structural limitation, we add an internal feedback loop to the PID controller. Secondly, we obtain conditions when unstable processes can be stabilized by a controller through an analytical analysis. Finally, we propose a simple on-line process identification and autotuning method for unstable processes. Many simulation results show that, in spite of its simplicity, the proposed on-line process identification method provides good accuracy in modeling the unstable process and acceptable robustness to measurement noises and disturbances. Also, the proposed autotuner shows good control performances for both servo and regulatory problems.

  • PDF

Analysis of Casual Relationships among Tourist Destination Knowledge and BSC Performance Perspectives (관광지 지식과 균형성과표 관점의 인과관계에 관한 연구)

  • Pyo, Sungsoo;Chung, Seunghoon;Chang, Haesook
    • Knowledge Management Research
    • /
    • v.6 no.1
    • /
    • pp.1-17
    • /
    • 2005
  • Both knowledge management and BSC practices are in its inception in the tourism field, and the study explores the relationships between knowledge and BSC perspectives using correlations and path analysis. The purpose of this study was to explore the casual relationships among tourist destination knowledge and BSC performance perspectives. The study model added knowledge perspectives to the usual BSC model (with customer, growth and learning, internal process, and financial perspectives), in addition to the modification of the financial perspectives to economic, socio-cultual and physical impact. The study found out that knowledge supports learning and growth perspectives greatly, and less extent, internal processes and customer perspectives. Learning and growth affects internal processes and customer perspectives. Internal process supports customer perspectives. Both customer and, less extent, internal process have impact on the final results. The final analysis results were different by destination type. The study concludes with recommendations for further studies including rational BSC model for tourist destinations and relationships between BSC performance indicators.

  • PDF

Three-dimensional Numerical Modeling of Water Temperature and Internal Waves in a Large Stratified Lake (대형 성층 호수의 수온과 내부파의 3차원 수치 모델링)

  • Chung, Se-Woong;Schladow, S. Geoffrey
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.4
    • /
    • pp.367-376
    • /
    • 2015
  • The momentum and kinetic turbulent energy carried by the wind to a stratified lake lead to basin-scale motions, which provide a major driving force for vertical and horizontal mixing. A three-dimensional (3D) hydrodynamic model was applied to Lake Tahoe, located between California and Nevada, USA, to simulate the dominant basin-scale internal waves in the deep lake. The results demonstrated that the model well represents the temporal and vertical variations of water temperature that allows the internal waves to be energized correctly at the basin scale. Both the model and thermistor chain (TC) data identified the presence of Kelvin modes and Poincare mode internal waves. The lake was weakly stratified during the study period, and produced large amplitude (up to 60 m) of internal oscillations after several wind events and partial upwelling near the southwestern lake. The partial upwelling and followed coastal jets could be an important feature of basin-scale internal waves because they can cause re-suspension and horizontal transport of fine particles from nearshore to offshore. The internal wave dynamics can be also associated with the distributions of water quality variables such as dissolved oxygen and nutrients in the lake. Thus, the basin-scale internal waves and horizontal circulation processes need to be accurately modeled for the correct simulation of the dissolved and particulate contaminants, and biogeochemical processes in the lake.

Collaboration Scripts for Argumentation Based on Activity Theory

  • KIM, Hyosook;KWON, Sungho;KIM, Dongsik
    • Educational Technology International
    • /
    • v.13 no.1
    • /
    • pp.145-173
    • /
    • 2012
  • The purpose of this study is to develop collaboration scripts as an instructional means to facilitate argumentation in computer-supported collaborative learning, and to analyze their effects. To develop collaboration scripts for argumentation, researchers used activity theory as a conceptual framework and refined the design principles by design-based research. Using LAMS, collaboration scripts for argumentation were developed based on the ArgueGraph. To examine their effects, 72 participants were divided into two groups by internal scripts and randomly allocated to one of three external scripts. Applying mixed methods, researchers analyzed argumentation competence related to the cognitive aspect, examined self-efficacy related to the motivational aspect, and identified the factors influencing collaborative learning processes and outcomes. Researchers found that the internal script is a critical factor to determine the dimensions, degrees, and duration of improvement in argumentation competence. That is, learners with higher internal scripts improved highly in the quality of single arguments, while learners with lower internal scripts improved continuously in the quality of argumentation sequences. The effects of the external scripts varied with the internal script levels and supporting periods. Besides, collaboration scripts for argumentation had positive effects on learners' self-efficacy, and learners with higher internal scripts had better self-efficacy. The factors influencing collaborative learning processes and outcomes showed different results depending on the learning context. Therefore, when scripting learner's interaction in CSCL, researchers should design the scripts adaptable to a natural context of activities.