• Title/Summary/Keyword: Internal Mixing

Search Result 302, Processing Time 0.022 seconds

Analysis of the Characteristics of Water Quality Difference Occurring between High Tide and Low Tide in Masan Bay (만조와 간조시 마산만 수질의 농도차 발생 특성의 분석)

  • Yoo, Youngjin;Kim, Sung Jae
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.102-113
    • /
    • 2019
  • Slack-tide sampling was carried out at 6 stations at high and low tide for a tidal cycle during spring tide of the early summer (June) and summer (July, August) of 2016 to determine the difference of water quality according to tide in Masan Bay, Korea. The mixing regime of all the water quality components investigated was well explained through the correlation with SAL. In the early summer and summer, TURB, DSi and NNN which mainly flow into the bay from the streams and SS, COD, AMN and $H_2S$ which mainly indicate the internal sink and source materials have a property of conservative mixing and non-conservative mixing, respectively. The conservative mixing showed a good linear relationship of the water quality between high and low tide, and the non-conservative mixing showed a variation of different pattern each other. Factor analysis performed on the concentration difference data sets between high and low tide helped in identifying the principal latent variables for them. In early summer, multiple effects (tidal action, natural influx and internal sinks and sources etc.) acted in combination for the differences to be distributed evenly in four factors (VF1~4), since there were few allochthonous inputs as a low-water season. On the contrary, in summer, the parameters showing large concentration difference at ST-1 affected by stream water were concentrated in one factor (VF1) and clearly distinguished from the parameters affected by the internal sinks and sources. In fact, there is no estuary (bay) that always maintains steady state flow conditions. The mixing regime of an estuary might be changed at any time due to the change of flushing time, and furthermore the change of end-member conditions due to the internal sinks and sources makes the occurrence of concentration difference inevitable. Therefore, when investigating the water quality of the estuary, it is necessary to take a sampling method considering the tide to obtain average water quality data.

Quantitative Characterization of Internal Fibrillation of Pulp Fiber

  • Won, Jong-Myoung;Lee, Jae-Hun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.1 s.119
    • /
    • pp.1-7
    • /
    • 2007
  • Internal fibrillation of pulp fiber is an important factor affecting paper properties. Internal fibrillation of pulp fiber is usually introduced with several kinds of modifications of fiber by the mechanical treatment such as refining, high shear and/or high consistency mixing, etc. Unfortunately there are no standardized methods that can characterize the extent of internal fibrillation and its contribution on the paper properties. The purpose of this study is to try and find the potential methods that can characterize the internal fibrillation of pulp fiber quantitatively. Softwood bleached kraft pulp was treated with Hobart mixer to introduce the internal fibrillation without the significant fiber damage and external fibrillation. The extent of internal fibrillation was increased with the increase of mechanical treatment consistency. Several fiber properties were measured to find the potential means that could characterize and quantity the internal fibrillation. Laminated area could not be used as a means for quantifying the internal fibrillation because of the effect of swelling and the different internal fibrillation behavior at different mechanical treatment consistency. Micro and macro internal fibrillation models were proposed for describing the different behavior for the mechanical treatment at low and high consistencies of pulp. The Internal fibrillation showed good correlation with swelling of fiber wall. This trend was confirmed through the measurement of wall thickness and/or cross section area of fiber. Therefore the internal fibrillation possibly can be described as the indices indicating the change of wall thickness and/or cross section area.

Numerical Analysis of Circulation Due to Density Current in a Small Reservoir (소규모 저수지에서 밀도류 순환의 수치해석)

  • Yoon, Tae Hoon;Han, Woon Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.105-114
    • /
    • 1993
  • The ciculation due to bottom density current produced by a dense inflow into a small reservoir is analysed by numerical scheme. Before the front of the density current arrives at the downstream end, the mixing in the reservoir is mainly caused by the anticlockwise vortex formed at the downstream of plunging point along the movement of bottom density current. Upon the arrival of the front of the density current at the downstream end an internal surge is created through an internal hydraulic jump. With repeated propagation of the internal surge back and forth the mixing in the reservoir is progressed and the thickness of dense layer is increased upward. The dilution of the overflow at downstream end is found to depend on inflow densimetric Froude number, reservoir length and elapsed time. The time required for the overflow to attain a specified dilution increases as reservoir length increases and Fre decreases.

  • PDF

Evaluation of Ventilation Rate and External Air Mixing Ratio in Semi-closed Loop Ventilation System of Pig House Considering Pressure Loss (압력손실을 고려한 양돈시설의 반폐회로 환기시스템의 환기량 및 혼합비율 평가)

  • Park You-me;Kim Rack-woo;Kim Jun-gyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.61-72
    • /
    • 2023
  • The increase in the rearing intensity of pigs has caused deterioration in the pig house's internal environment such as temperature, humidity, ammonia gas, and so on. Traditionally, the widely used method to control the internal environment was through the manipulation of the ventilation system. However, the conventional ventilation system had a limitation to control the internal environment, prevent livestock disease, save energy, and reduce odor emission. To overcome this problem, the air-recirculated ventilation system was suggested. This system has a semi-closed loop ventilation type. For designing this system, it was essential to evaluate the ventilation rates considering the pressure loss of ducts. Therefore, in this study, pressure loss calculation and experiment were conducted for the quantitative ventilation design of a semi-closed loop system. The results of the experiment showed that the inlet through which external air flows should always be opened. In addition, it was also found that for the optimum design of the semi-closed loop ventilation system, it was appropriate to install a damper or a backflow prevention device rather than a ventilation fan.

Characteristics of the Atomization in Counter-Swirl Internal Mixing Atomizer

  • Lee, Sam-Goo;Kim, Kyu-Chul;Park, Byung-Joon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.27-27
    • /
    • 1999
  • To illustrate the global variation of the droplet mean diameters and the turbulent flow characteristics in counterflowing internal mixing pneumatic nozzle, the experimental measurements at five axial downstream locations(i.e., at Z=30, 50, 80, 120, and 170mm) were made using a PDPA(Phase Doppler Particle Analyzer) under the different air injection pressures ranging from 40 ㎪ to 120 ㎪. A nozzle with axi-symmetric tangential-drilled four holes at an angle of 15$^{\circ}$ has been designed and manufactured. The distributions of velocities, turbulence intensities, turbulence kinetic energy, turbulent correlation coefficients, spray angle, droplet mean diameters, volume flux, number density are quantitatively analyzed. It is possible to discern the effects of increasing air pressure. It indicates that the strong axial momentum in spite of more or less disparity between the velocity components means more reluctant to disperse radially, and that axial fluctuating velocities are substantially higher than those of radial and tangential ones, suggesting that the disintegration process is enhanced under higher air assist. The larger droplets are detected in the spray centerline at the near stations and smaller ones are generated due to further subsequent breakup at farther axial locations are attributed to the internal mixing type nozzle characteristics. Despite of the strong axial momentum, the poor atomization around the centre close to the nozzle exit is attributed to the lower rates of spherical particles which are not subject to instantaneous breakup. As it goes downstream, however, substantial increases in SMD(Sauter Mean Diameter) from the central part toward spray periphery are understandable because the droplet relative velocity is too low to bring about any subsequent disintegration.

  • PDF

Spray characteristics on mixing region scale of twin fluid atomizer (이류체 분사노즐의 혼합영역 형상에 따른 분무특성)

  • 김병문;김혁주;이충원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2147-2159
    • /
    • 1991
  • The effects of principal dimensions of internal mixing twin-fluid atomized and operating conditions on the atomizing characteristics are experimentally investigated. The tests are conducted over the wide range of air/liquid ratio to predict influences of the diameter and length of nozzle, contacting angle between air and liquid in the mixing chamber, and air orifice diameter on the mean drop size(SMD), spray angle, distribution of drop size, and spray dispersion, And also, initial distribution of liquid column by air stream within the mixing chamber are observed through the transparent nozzles. A He-Ne laser particle sizer(MALVERN Model 2604) was used to measure the Sauter.s mean diameter( $D_{321}$) and droplet sizes distribution. In this experiment the air/liquid ratio, mixing length and nozzle diameter have a great influence on SMD, spray angle, droplet sizes distribution and spray dispersion.

Study on lowering the percolation threshold of carbon nanotube-filled conductive polypropylene composites

  • Park, Seung Bin;Lee, Moo Sung;Park, Min
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • Conductive polymer composites (CPCs) consist of a polymeric matrix and a conductive filler, for example, carbon black, carbon fibers, graphite or carbon nanotubes (CNTs). The critical amount of the electrically conductive filler necessary to build up a continuous conductive network, and accordingly, to make the material conductive; is referred to as the percolation threshold. From technical and economical viewpoints, it is desirable to decrease the conductive-filler percolation-threshold as much as possible. In this study, we investigated the effect of polymer/conductive-filler interactions, as well as the processing and morphological development of low-percolation-threshold (${\Phi}c$) conductive-polymer composites. The aim of the study was to produce conductive composites containing less multi-walled CNTs (MWCNTs) than required for pure polypropylene (PP) through two approaches: one using various mixing methods and the other using immiscible polymer blends. Variants of the conductive PP composite filled with MWCNT was prepared by dry mixing, melt mixing, mechanofusion, and compression molding. The percolation threshold (${\Phi}c$) of the MWCNT-PP composites was most successfully lowered using the mechanofusion process than with any other mixing method (2-5 wt%). The mechanofusion process was found to enhance formation of a percolation network structure, and to ensure a more uniform state of dispersion in the CPCs. The immiscible-polymer blends were prepared by melt mixing (internal mixer) poly(vinylidene fluoride) (PVDF, PP/PVDF, volume ratio 1:1) filled with MWCNT.

A Study on High Cycle Temperature Fluctuation Caused by Thermal Striping in a Mixing Tee Pipe (혼합배관 내의 열 경계층 이동으로 인한 고주기 온도요동에 관한 연구)

  • Kim, Seoug-B.;Park, Jong-H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.5
    • /
    • pp.9-19
    • /
    • 2007
  • Fluid temperature fluctuations in a mixing tee pipe were numerically analyzed by LES model in order to clarify internal turbulent flows and to develope an evaluation method for high-cycle thermal fatigue. Hot and cold water with an temperature difference $40^{\circ}C$ were supplied to the mixing tee. Fluid temperature fluctuations in a mixing tee pipe is analysed by using the computational fluid dynamics code, FLUENT, Temperature fluctuations of the fluid and pipe wall measured as the velocity ratio of the flow in the branch pipe to that in the main pipe was varied from 0.05 to 5.0. The power spectrum method was used to evaluate the heat transfer coefficient. The fluid temperature characteristics were dependent on the velocity ratio, rather than the absolute value of the flow velocity. Large fluid temperature fluctuations were occurred near the mixing tee, and the fluctuation temperature frequency was random. The ratios of the measured heat transfer coefficient to that evaluated by Dittus-Boelter's empirical equation were independent of the velocity ratio, The multiplier ratios were about from 4 to 6.

Hydration Properties of High-strength Cementitious Composites Incorporating Waste Glass Beads (폐유리발포비드를 혼입한 고강도 시멘트 복합체의 수화 특성)

  • Pyeon, Su-Jeong;Kim, Gyu-Yong;Lee, Sang-Soo;Nam, Jeong-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.74-79
    • /
    • 2022
  • In this study, the effect of a sudden decrease in internal humidity and a decrease in hydration level due to the tight internal structure of high-strength concrete and cement composites was investigated. To verify the change in the internal Si hydration, waste glass foam beads were used as a lightweight aggregate, and the internal unreacted hydrate reduction and hydrate formation tendency were identified over the mid- to long-term. Waste glass foam beads were mixed with 5, 10, and 20 %, and were used by pre-wetting. As the mixing rate of the waste glass foamed beads increased, the strength showed a tendency to decrease. In addition, when the mixing amount of pre-wetted waste glass foam beads increases inside through XRD analysis, TGA analysis, and Si NMR analysis, it is judged that the hydration degree of internal Si is different because moisture is supplied to the paste.

Preparation of Wool/Poly(ethylene terephthalate) Composite Membrane and It's Dyeablities (모/폴리에틸렌테레프탈레이트 복합막의 제조와 염색성)

  • Kim, Gong-Ju;Shin, Hye Kyong;Park Mi-Ra;Kim, Kyong-Hi;Jeon, Jae-Hong
    • Textile Coloration and Finishing
    • /
    • v.9 no.1
    • /
    • pp.23-32
    • /
    • 1997
  • Composite membranes having different mixing ratio of Wool(SCMK) and poly(ethylene terephthalate) (PET) were prepared by dissolving wool/PET in hexafluoro-2-propanol(HFIP), casting the obtained solution on a glass plate and evaporation the solvent in the presence and absence of an electric field. The internal structure of the prepared membrane was investigated using polarise microscope dyeing and dye permeation method. In the composite membrane prepared under electric field, both components were micro mixing, while in the membranes prepared under nonelectric field, the two components formed a random sea/island structure according to different mixing ratio. Such characteristic membrane structure was influenced the permeation behavior of C.I. Acid Red 118 through the membranes from an aqueous solution.

  • PDF