• 제목/요약/키워드: Internal Loading

검색결과 614건 처리시간 0.033초

2심 냉간성형 각형 CFT기둥-보 접합부의 구조거동 (Structural Behavior of Two-Seam Cold Formed Square CFT Column to Beam Connections)

  • 오헌근;김선희;박찬면;최성모
    • 한국공간구조학회논문집
    • /
    • 제12권4호
    • /
    • pp.81-90
    • /
    • 2012
  • The concrete-filled tube (CFT) column has the excellent structural performance. But it is difficult to connect with column and beam because of closed section. Its Solution, 2 members of ㄷchennel in which Internal diaphragm is installed were welded beforehand and the method of making Rectangular Steel Tube was proposed. According to upside and downside junction shape, Internal diaphragm suggested as symmetric specimen and asymmetric specimen. The upper and lower diaphragm of the Symmetric specimen used the same horizontal and The upper diaphragm of the Asymmetric specimen used the horizontal plate and the lower diaphragm used the vertically plate. In this research, 4 T-shape column to beam steps connections were tested with cyclic loading experiment in order to evaluate the structural capability of the offered connection. Symmetric specimens be a failure in 0.03rad from beam flange. And Asymmetric specimens be a failure in 0.05rad from column interface. The comparison results of All specimens shown similar to energy absorption capacity in 0.02rad.

Plantar Soft-tissue Stress states in standing: a Three-Dimensional Finite Element Foot Modeling Study

  • Chen, Wen-Ming;Lee, Peter Vee-Sin;Lee, Tae-Yong
    • 한국운동역학회지
    • /
    • 제19권2호
    • /
    • pp.197-204
    • /
    • 2009
  • It bas been hypothesized that foot ulceration might be internally initiated. Current instruments which merely allow superficial estimate of plantar loading acting on the foot, severely limit the scope of many biomechanical/clinical studies on this issue. Recent studies have suggested that peak plantar pressure may be only 65% specific for the development of ulceration. These limitations are at least partially due to surface pressures not being representative of the complex mechanical stress developed inside the subcutaneous plantar soft-tissue, which are potentially more relevant for tissue breakdown. This study established a three-dimensional and nonlinear finite element model of a human foot complex with comprehensive skeletal and soft-tissue components capable of predicting both the external and internal stresses and deformations of the foot. The model was validated by experimental data of subject-specific plantar foot pressure measures. The stress analysis indicated the internal stresses doses were site-dependent and the observation found a change between 1.5 to 4.5 times the external stresses on the foot plantar surface. The results yielded insights into the internal loading conditions of the plantar soft-tissue, which is important in enhancing our knowledge on the causes of foot ulceration and related stress-induced tissue breakdown in diabetic foot.

회전원판공정을 이용한 하수의 질산화에 관한 연구 (A Study on the Rotating Biological Contactors for the Nitrification of Sewage)

  • 정근진;이상수;김시현;박규홍
    • 한국물환경학회지
    • /
    • 제18권2호
    • /
    • pp.189-199
    • /
    • 2002
  • Nitrogen, in its various forms, can deplete dissolved oxygen levels in receiving waters, stimulate aquatic growth, exhibit toxicity toward aquatic life and affect the suitability of sewage for reuse. Pilot-scale Rotating Biological Contactor(RBC) experiments were conducted to examine biological nitrification, respectively, of municipal sewage with five different internal recirculation ratios of 0, 1, 2, 3, and 4 using the constant hydraulic loading of $205L/m^2{\cdot}day$. The use of internal recirculation improved nitrification on account of the dilution of biodegradable organic carbon in influent sewage down to 15 mg/L of $SBOD_5$ or less. Ammonium nitrogen of $14.3{\pm}2.4%$ was consumed by cellular assimilation without the occurrence of denitrification. The thickness of biofilm didn't seem effect significantly the nitrification and denitrification. Nitrification with internal recirculation was found to occur using hydraulic loading rate of as high as $205L/m^2{\cdot}day$, which was beyond the generally known values of it.

배관실험을 통한 국부감육 배관의 손상거동 평가 (An Evaluation of Failure Behavior of Pipe with Local Wall Thinning by Pipe Experiment)

  • 김진원;박치용
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.731-738
    • /
    • 2002
  • To understand failure behavior of pipe thinned by flow accelerated corrosion, in this study, the pipe failure tests were performed on 102mm-Sch.80 carbon steel pipe with various local wall thinning shapes, and the failure mode, load carrying capacity, and deformability were investigated. The tests were conducted under loading conditions of 4-points bending and internal pressure. The experimental results showed that the failure mode of thinned pipe depended on magnitude of internal pressure and thinning length as well as loading direction and thinning depth and angle. The variation in load carrying capacity and deformability of thinned pipe with thinning length was determined by stress type appled to the thinning area and circumferential thinning angle. Also, the effect of internal pressure on failure behavior was dependent on failure mode of thinned pipe, and it promoted crack occurrence and mitigated local buckling at thinned area.

하중조건에 따른 원추형 내측연결 임플랜트 시스템에서 지대주 침하 및 적합에 관한 연구 (Abutment Sinking and Fitness of Conical Internal Connection Implant System according to Loading Condition)

  • 이한라;김희중;손미경;정재헌
    • 구강회복응용과학지
    • /
    • 제24권1호
    • /
    • pp.77-89
    • /
    • 2008
  • 이 연구의 목적은 원추형 내측 연결 임플랜트 시스템에서 하중조건에 따른 지대주의 침하 및 적합도를 평가하는 것이다. 본 연구에서는 내부 원추형 연결방식의 Alloden implant system (Nei Corp. Korea)의 고정체와 2종류(conventional, FDI)의 지대주를 사용하였다. 임상에서 Alloden 임플랜트는 지대주와 고정체 연결시 처음에 손으로 지긋이 눌러 고정시킨 후 mallet을 이용하여 약 3회정도 타격을 가하여 고정한다. 이때 타격시의 정확한 힘을 측정하여 각 실험군에 적용시켰다. 적용 횟수는 손가락으로 누르는 힘을 1회, mallet으로 타격하는 힘을 3회, 저작력으로 가정한 20kg의 힘을 지대주의 침하가 생기지 않을때까지 각각의 표본에 적용하였다. 그 후 각 단계에 대한 지대주의 침하량을 Vernier caliper를 이용하여 측정하였다. 임플랜트는 불포화 폴리에스터(Epovia, Cray Valley Inc. Korea)에 매몰하여 중합시켰고 모든 표본을 절삭한 후 연마하여 주사전자현미경을 통하여 분석, 평가하였다.

OrcaFlex를 이용한 심해 SCR 구조 해석 (Structural Analysis of Deepwater Steel Catenary Riser using OrcaFlex)

  • 박규식;최한석;김도균;유수영;강수창
    • 한국해양공학회지
    • /
    • 제29권1호
    • /
    • pp.16-27
    • /
    • 2015
  • The design challenges when attempting to obtain sufficient strength for a deepwater steel catenary riser (SCR) include high stress near the hang-off location, an elevated beam-column buckling load due to the effective compression in the touchdown zone (TDZ), and increased stress and low-cycle fatigue damage in the TDZ. Therefore, a systematic strength analysis is required for the proper design of an SCR. However, deepwater SCR analysis is a new research area. Thus, the objective of this study was to develop an overall analysis procedure for a deepwater SCR. The structural behavior of a deepwater SCR under various environmental loading conditions was investigated, and a sensitivity analysis was conducted with respect to various parameters such as the SCR weight, weight of the internal contents, hang-off angle (HOA), and vertical soil stiffness. Based on a deepwater SCR design example, it was found that the maximum stress of an SCR occurred at a hang-off location under parallel loading direction with respect to the riser plane, except for a wave dominant dynamic survival loading condition. Furthermore, the tensile stress governed the total stress of the SCRs, whereas the bending stress governed the total stress at the TDZ. The weight of the SCR and internal contents affected the maximum stress of the SCR more than the HOA and vertical soil stiffness, because the weight of the SCR, including the internal contents, was directly related to its tensile stress.

보라매 전투기 전자광학타겟팅 장비 탑재형태의 분석 평가 (An Evaluating Analysis of Installing Type of EOTS for The Boramae Fighter)

  • 강치행;오승현;강희창;천호정;이범석
    • 한국항공우주학회지
    • /
    • 제40권10호
    • /
    • pp.910-915
    • /
    • 2012
  • 본 논문에서는 탐색개발중인 전투기에 탑재할 EOTS의 운용유지 소요기술 개발비용에 대한 기술적 특성을 평가 분석하여 탑재방식을 연구하였다. 15개 항의 운용성 측면의 평가 결과, 내장형은 스텔스 기능의 장점이 있으며, 외장형은 장 탈착성, 접근성, 현 운용 항공기와의 호환 활용성 및 무장 교체 가능성 등의 장점이 있다고 평가되었다. 17개 항의 기술 및 개발 비용 평가 결과, 소형 경량화 및 소모 전력에서는 내장형 탑재 방식이 유리하지만, 국내 기술의 적용에 의한 비용 절감과 성능 달성을 위한 기술 안정성 측면에서는 외장형 탑재방식이 우수하다고 평가되었다.

Experimental and Numerical Study on Complex Multi-planar Welded Tubular Joints in Umbrella-Type Space Trusses with Long Overhangs

  • Jiao, Jinfeng;Ma, Xiao;Lei, Honggang;Chen, Y. Frank
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1525-1540
    • /
    • 2018
  • A test rig with multi-functional purposes was specifically designed and manufactured to study the behavior of multi-planar welded tubular joints subjected to multi-planar concurrent axial loading. An experimental investigation was conducted on full-scale welded tubular joints with each consisting of one chord and eight braces under monotonic loading conditions. Two pairs or four representative specimens (two specimens for each joint type) were tested, in which each pair was reinforced with two kinds of different internal stiffeners at the intersections between the chords using welded rectangular hollow steel sections (RHSSs) and the braces using rolled circular hollow steel sections (CHSSs) and welded RHSSs. The effects of different internal stiffeners at the chord-brace intersection on the load capacity of joints under concurrent multi-planar axial compression/tension are discussed. The test results of joint strengths, failure modes, and load-stress curves are presented. Finite element analyses were performed to verify the experimental results. The study results show that the two different joint types with the internal stiffeners at the chord-brace intersection under axial compression/tension significantly increase the corresponding ultimate strength to far exceed the usual design strength. The load carrying capacity of welded tubular joints decreases with a higher degree of the manufacturing imperfection in individual braces at the tubular joints. Furthermore, the interaction effect of the concurrent axial loading applied at the welded tubular joint on member stress is apparent.

Wind pressure characteristics of a low-rise building with various openings on a roof corner

  • Wang, Yunjie;Li, Q.S.
    • Wind and Structures
    • /
    • 제21권1호
    • /
    • pp.1-23
    • /
    • 2015
  • Wind tunnel testing of a low-rise building with openings (holes) of different sizes and shapes on a roof corner is conducted to measure the internal and external pressures from the building model. Detailed analysis of the testing data is carried out to investigate the characteristics of the internal and external pressures of the building with different openings' configurations. Superimposition of the internal and external pressures makes the emergence of positive net pressures on the roof. The internal pressures demonstrate an overall uniform distribution. The probability density function (PDF) of the internal pressures is close to the Gaussian distribution. Compared with the PDF of the external pressures, the non-Gaussian characteristics of the net pressures weakened. The internal pressures exhibit strong correlation in frequency domain. There appear two humps in the spectra of the internal pressures, which correspond to the Helmholtz frequency and vortex shedding frequency, respectively. But, the peak for the vortex shedding frequency is offset for the net pressures. Furthermore, the internal pressure characteristics indirectly reflect that the length of the front edge enhances the development of the conical vortices.The objective of this study aims to further understanding of the characteristics of internal, external and net pressures for low-rise buildings in an effort to reduce wind damages to residential buildings.

LNG 저장탱크용 관통 파이프의 설계 최적화 연구 (The Optimum Design of Internal Pipes for LNG Storage Tank)

  • 서흥석;양영명;홍성호;김형식;김영균
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.776-781
    • /
    • 2001
  • Internal pipes technology for LNG Storage tank developed because of the perceived safety risk of having an opening near the base of the shell. This is because the shell at this point is the most highly stressed component of the primary containment. other, secondary, problems arise because the movement of the tank in this region is also at a maximum. This requires the use of bellows either in the interspace or on the outside of the outer tank. Therefore the internal pipe, through the roof, solves these problems. The loading conditions calculated from design concept are then used to perform a pipe stress analysis. As well as determining the stresses in the internal pipe and checking against allowable stress, it determines the reaction forces at the support positions.

  • PDF