• Title/Summary/Keyword: Internal Heat Energy

Search Result 343, Processing Time 0.03 seconds

On the Behavior of Liquid Droplets Depending upon ALR in Two-phase Internal Mixing Nozzle Jet (2상 내부 혼합형 노즐분사에서 ALR 변화에 따른 액적의 거동)

  • Kim Kyu Chul;Namkung Jung Hwan;Lee Sang Jin;Rho Byung Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.385-388
    • /
    • 2002
  • The researches of a two-phase atomizers have been carried out in the field of automotive and aerospace industries in order to improve the atomization performance of the liquid droplets ejecting from these nozzles. The smaller droplets have the advantages of the reduction of environmental pollution matter and effective use of energy through the improvement of heat and mass transfer efficiency. Thus, to propose the basic information of two-phase flow, an internal mixing atomizer was designed, its shape factor was 0.6 and the liquid feeding hole was positioned at the center of the mixing tube which was used to mix the air and liquid. The experimental work was performed in the field after the nozzle exit orifice. The measurement of the liquid droplets was made by PDPA system. This system can measure the velocity and size of the droplets simultaneously. The number of the droplets used in this calculation was set to 10,000. The flow patterns were regulated by ALR (Air to Liquid mass Ratio). ALR was varied from 0.1024 to 0.3238 depending on the mass flow rate of the air. The analysis of sampling data was mainly focused on the spray characteristics such as flow characteristics distributions, half-width of spray, RMS, and turbulent kinetic energy with ALR.

  • PDF

An Experimental Study on the Combustion and Emission Characteristics of Hydrogen Enriched LPG Fuel in a Constant Volume Chamber (정적연소기내 H2-LPG 연료의 혼합 비율에 따른 연소 및 배출가스 특성에 관한 실험적 연구)

  • Lee, Seang-Wock;Kim, Ki-Jong;Ko, Dong-Kyun;Yoon, Yu-Bin;Cho, Yong-Seok
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.3
    • /
    • pp.227-235
    • /
    • 2012
  • Finding an alternative fuel and reducing environmental pollution are the main goals for future internal combustion engines. The purpose of this study is to obtain low-emission and high-efficiency by hydrogen enriched LPG fuel in constant volume chamber. An experimental study was carried out to obtain fundamental data for the combustion and emission characteristics of pre-mixed hydrogen and LPG in a constant volume chamber (CVC) with various fractions of hydrogen-LPG blends. To maintain equal heating value of fuel blend, the amount of LPG was decreased as hydrogen was gradually added. Exhaust emissions were measured using a HORIBA exhaust gas analyzer for various fractions of hydrogen-LPG blends. The results showed that the rapid combustion duration was shortened, and the rate of heat release elevated as the hydrogen fraction in the fuel blend was increased. Moreover, the maximum rate of pressure rise also increased. These phenomena were attributed to the burning velocity which increased exponentially with the increased hydrogen fraction in the $H_2$-LPG fuel blend. Exhaust HC and $CO_2$ concentrations decreased, while NOX emission increased with an increase in the hydrogen fraction in the fuel blend. Our results could facilitate the application of hydrogen and LPG as a fuel in the current fossil hydrocarbon-based economy and the strict emission regulations in internal combustion engines.

The Combination therapy of Chinese traditional and Western medicine about Tuberculous exudative pleural effusion (결핵성삼출성뇌막염(結核性渗出性腦膜炎)의 중서의결합치료(中西醫結合治療) (중의잡지 중심)(中醫雜誌 中心))

  • Choi, Hae-Yun;Kim, Jong-Dae
    • The Journal of Internal Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.438-450
    • /
    • 1998
  • Pleural effusion means the inflammation of pleura which has a majority of respiratory disease. The main clinical manifestation is pleural effusional pain, dyspnea, cough, fever, etc. and at present the Tuberculous pleural effusion has the most frequency in which exists exudate in our country. And during studying oriental medical treatment about Tuberculous exudative pleural effusional patient, we found the clinical case about The Combination therapy of Chinese traditional and Western medicine at journal of traditional Chinese Medicine and considered it would be help in oriental medical treatment, so we adjust and report now. This study was performed by analyzing the six papers reported centering around the clinical case of The Combination therapy of Chinese traditional and Western medicine in journal of traditional Chinese Medicine published between 1990-1996. As these papers have no mistakes on diagnosis because it obtained pleurocentesis, tuberculin test positive reaction on choicing clinical case, definite results on X-ray, ultrasound as well as clinical basis, so it considers an apt conclusion. The results were as follows: 1. Western medical treatment uses chemical remedy same with pulmonary tuberculosis, and in case of tubercular pleuritis, it needs thoracic duct pyorrhea, and according to simple exudation also operates therapheutic pleural paracentesis. 2. In case of hydrothorax absorption about tuberculous pleural effusion, prescription of purge the heat accumulated in the lung and eliminate the retention of fluid with powerful purgatives shows considerable effects. 3. The latter period treatment of tuberculous pleural effusion needs Supplement qi and active the collaterals, Nourishing yin and clearing heat in addition to Supporting healthy energy to eliminate evils. 4. In case of curing tuberculous pleural effusion, The Combination therapy of Chinese traditional and Western medicine shows more considerable effect than single western medical treatment in absorption of hydrothorax. 5. In case of curing tuberculous pleural effusion, The Combination therapy of Chinese traditional and Western medicine shows more considerable effect than single western medical treatment in prevention of disease reappearance. 6. In case of curing tuberculous pleural effusion, The Combination therapy of Chinese traditional and Western medicine shows more considerable effect than single western medical treatment in vitality recovery at the latter period of disease.

  • PDF

A Study on the Evaluation of Mterial Degradaion for 2.25Cr-1Mo Steel using Ultrasonic Attenuation Characterization

  • Kim, Chung-Soek;Park, Ik-Keun;Park, Un-Su;Kim, Hyun-Mook;Kwun, Sook-In;Byeon, Jai-Won
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.319-323
    • /
    • 2001
  • In significant number of energy-related facilities for like thermal power plant or petro-chemical industry, CrMo steels are widely used energy conversion industries. However, these materials undergo precipitation of carbides or intermetallic compounds into grain boundary and change of internal microstructure such as coarsening of precipitation, decrease of solute elements and impurity segregation under more severe service conditions, which results in deterioration of inherent superior material characteristics. In this study, it was verified experimentally the feasibility of the aging degradation evaluation for degraded 2.25Cr-lMo steel specimens prepared by isothermal aging heat treatment at 63$0^{\circ}C$ by high frequency longitudinal ultrasonic and surface SH wave investigating the change of attenuation coefficient analyzed by spectral analysis. Attenuation coefficient had a tendency to increase as degradation proceeded.

  • PDF

Synthesis of Ag-Pd Electrode having Oxide Additive (산화물을 첨가한 Ag-Pd 전극의 제조)

  • Lee, Jae-Seok;Lee, Dong-Yoon;Song, Jae-Sung;Kim, Myoung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.735-738
    • /
    • 2003
  • Downsizing electronics requires precision position control with an accuracy of sub-micron order, which demands development of ultra-fine displacive devices. Piezoelectric transducer is one of devices transferring electric field energy into mechanical energy and being capable for fine displacement control. The transducer has been widely used as fine Position control device Multilayer piezoelectric actuator, one of typical piezo-transducer, is fabricated by stacking alternatively ceramic and electrode layers several hundred times followed by cofiring process. Electrode material should be tolerable in the firing process maintaining at ceramic-sintering temperatures up to $1100{\sim}1300^{\circ}C$. Ag-Pd can be used as stable electrode material in heat treatment above $960^{\circ}C$. Besides, adding small quantity ceramic powder allow the actuator to be fabricated in a good shape by diminishing shrinkage difference between ceramic and electrode layers, resulting in avoidance of crack and delamination at and/or nearby interface between ceramic an electrode layers. This study presents synthesis of nano-oxide-added Ag/Pd powders and its feasibility to candidate material tolerable at high temperature. The powders were formed in a co-precipitation process of Ag and Pd in nano-oxide-dispersed solution where Ag and Pd precursors are melted in $HNO_3$ acid.

  • PDF

A numerical study on the vaporization of a droplet considering internal circulating flow in the presence of an oscillating flow (진동하는 유동장하에서 내부 순환 유동을 고려한 액적의 증발에 관한 수치적 연구)

  • Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1700-1716
    • /
    • 1996
  • The two-dimensional, unsteady, laminar conservation equations for mass, momentum, energy and species transport in the gas phase and mass, momentum and energy in the liquid phase are solved simultaneously in spherical coordinates in order to study heating and vaporization of a droplet entrained in the oscillating flow. The numerical solution gives the velocity and temperature distribution in both gas and liquid phase as a function of time. When the gas flow oscillates around an vaporizing droplet, the liquid flow circulates in the clockwise or counterclockwise direction and the temperature distribution in the liquid phase changes its shapes, depending on the gas fow direction. When the gas flow changes its direction of circulating liquid flow is opposite to the gas flow, forming two vortex circulating in the opposite direction. During the heating period, the difference in the maximum and minimum temperature is large, followed by the almost uniform temperature slightly below the boiling temperature. The mass and heat transfer from the droplet depend on the droplet temperature, droplet diameter and the magnitude of relative velocity, giving the droplet lifetime different from the d$^{2}$-law.

Developing Optimal Pre-Cooling Model Based on Statistical Analysis of BEMS Data in Air Handling Unit (BEMS 데이터의 통계적 분석에 기반한 공조기 최적 예냉운전 모델 개발)

  • Choi, Sun-Kyu;Kwak, Ro-Yeul;Goo, Sang-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.10
    • /
    • pp.467-473
    • /
    • 2014
  • Since the operating conditions of HVAC systems are different from those for which they are designed, on-going commissioning is required to optimize the energy consumed and the environment in the building. This study presents a methodology to analyze operational data and its applications. A predicted operation model is to be produced through a statistical data analysis using multiple regressions in SPSS. In this model, the dependent variable is the pre-cooling time, and the independent variables include the power output of the supply air inverter during pre-cooling, the supply air set temperature during pre-cooling, the indoor temperature-indoor set temperature just before pre-cooling, supply heat capacity, and the lowest outdoor air temperature during non-cooling/non-heating hours. The correlation coefficient R2 of the multiple regression model between the pre-cooling hour and the internal/external factors is of 0.612, and this could be used to provide information related to energy conservation and operating guidance.

Prediction of Stratification Model for Diffusers in Underfloor Air Distribution System using the CFD (CFD를 활용한 바닥공조시스템 디퓨저의 성층화 모델 예측)

  • Son, Jeong-Eun;Yu, Byeong-Ho;Pang, Seung-Ki;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.105-110
    • /
    • 2017
  • Underfloor air distribution (UFAD) is an air distribution strategy for providing ventilation and space conditioning in buildings. UFAD systems use the underfloor plenum beneath a raised access floor to provide conditioned air through floor diffusers that create a vertical thermal stratification during cooling operations. Thermal stratification has significant effects on energy, indoor air quality, and thermal comfort performance. The purpose of this study was to characterize the influence of a linear bar grille diffuser on thermal stratification in both interior and perimeter zones by developing Gamma-Phi based prediction models. Forty-eight simulations were carried out using a Computational Fluid Dynamics (CFD) technique. The number of diffusers, the air flow supply, internal heat gains, and solar radiations varied among the different cases. Models to predict temperature stratification for the tested linear bar grille diffuser have been developed, which can be directly implemented into dynamic whole-building simulation software such as EnergyPlus.

Level 1 probabilistic safety assessment of supercritical-CO2-cooled micro modular reactor in conceptual design phase

  • So, Eunseo;Kim, Man Cheol
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.498-508
    • /
    • 2021
  • Micro reactors are increasingly being considered for utilization as distributed power sources. Hence, the probabilistic safety assessment (PSA) of a direct supercritical-CO2-cooled fast reactor, called micro modular reactor (MMR), was performed in this study; this reactor was developed using innovative design concepts. It adopted a modular design and passive safety systems to minimize site constraints. As the MMR is in its conceptual design phase, design weaknesses and valuable safety insights could be identified during PSA. Level 1 internal event PSA was carried out involving literature survey, system characterization, identification of initiating events, transient analyses, development of event trees and fault trees, and quantification. The initiating events and scenarios significantly contributing to core damage frequency (CDF) were determined to identify design weaknesses in MMR. The most significant initiating event category contributing to CDF was the transients with the power conversion system initially available category, owing to its relatively high occurrence frequency. Further, an importance analysis revealed that the safety of MMR can be significantly improved by improving the reliability of reactor trip and passive decay heat removal system operation. The findings presented in this paper are expected to contribute toward future applications of PSA for assessing unconventional nuclear reactors in their conceptual design phases.

Anti-Icing Characteristics of Aluminum 6061 Alloys According to Surface Nanostructure (알루미늄 6061 합금의 표면 나노 구조물 변화에 따른 방빙 특성 연구)

  • Rian, Kim;Chanyoung, Jeong
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.476-486
    • /
    • 2022
  • Recently, aluminum 6061 instead of copper alloy is used for cooling heat exchangers used in the internal combustion of engines due to its economic feasibility, lightweight, and excellent thermal conductivity. In this study, aluminum 6061 alloy was anodized with oxalic acid, phosphoric acid, or chromic acid as an anodizing electrolyte at the same concentration of 0.3 M. After the third anodization, FDTS, a material with low surface energy, was coated to compare hydrophobic properties and anti-icing characteristics. Aluminum was converted into an anodization film after anodization on the surface, which was confirmed through Energy Dispersive X-ray Spectroscopy (EDS). Pore distance, interpore distance, anodization film thickness, and solid fraction were measured with a Field Emission Scanning Electron Microscope (FESEM). For anti-icing, hydrophobic surfaces were anodized with oxalic acid, phosphoric acid, or chromic acid solution. The sample anodized in oxalic acid had the lowest solid fraction. It had the highest contact angle for water droplets and the lowest contact hysteresis angle. The anti-icing contact angle showed a tendency to decrease for specimens in all solutions.