• Title/Summary/Keyword: Internal Friction

검색결과 607건 처리시간 0.018초

휴대용콘의 선단저항값을 이용한 모래의 상대밀도 및 내부마찰각 추정 (Estimation of the Relative Density and Internal Friction Angle for Sand using Cone-tip Resistance of the PCPT)

  • 박재성;손영환;노수각;봉태호
    • 한국농공학회논문집
    • /
    • 제54권4호
    • /
    • pp.137-145
    • /
    • 2012
  • Sand is one of the essential materials used for social infrastructure construction such as embankment, landfill and backfill. It was known that mechanical properties and shear strength of sand are closely related to relative density. Therefore it is very important to determine accurate relative density. In this study, Portable Cone Penetration Tester (PCPT) was used to estimate the relative density and the internal friction angle of sand. PCPT cone-tip resistance ($q_c$) was measured changing the relative density of the two soil samples.Standard sand (JMJ) and Busan sand (BS). Also, a direct shear test was performed to investigate relationship between relative density and internal friction angle. The size and shape of soil particles were confirmed by using Scanning Electron Microscope (SEM). As a result, the log value of $q_c$ was linearly correlated with relative density and internal friction angle. In particular, the internal friction angle of BS sample was greater than that of JMJ, which was due to difference of the shape and mean size of particles. This result shows that it is important to determine the shape and size of particles as well as relative density to define mechanical property of sand. Through this study, it can be more effectively and conveniently to investigate relative density and shear strength of sand by using PCPT in situ.

MEASUREMENT AND CHARACTERIZATION OF FRICTION IN AUTOMOTIVE DRIVESHAFT JOINTS

  • Lee, C.H.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.723-730
    • /
    • 2007
  • The typical design of automotive driveshafts generally utilizes Constant Velocity(CV) joints as a solution to NVH. CV joints are an integral part of vehicles and significantly affect steering, suspension, and vehicle vibration comfort levels. Thus, CV joints have been favored over universal joints due to the constant velocity torque transfer and plunging capability. Although CV joints are common in vehicle applications, current research works on modeling CV joint friction and assumes constant empirical friction coefficient values. However, such models are long known to be inaccurate, especially under dynamic conditions, which is the case for CV joints. In this paper, an instrumented advanced CV joint friction apparatus was developed to measure the internal friction behavior of CV joints using actual tripod-type joint assemblies. The setup is capable of measuring key performance of friction under different realistic operating conditions of oscillatory speeds, torque and joint installation angles. The apparatus incorporates a custom-installed triaxial force sensor inside of the joint to measure the internal CV joint forces(including friction). Using the designed test setup, the intrinsic interfacial parameters of CV joints were investigated in order to understand their contact and friction mechanisms. The results provide a better understanding of CV joint friction characteristics in developing improved automotive driveshafts.

소나무 압축응력재(壓縮應力材)의 동(動) 탄성율(彈性率)과 내부마찰(內部摩擦) (Dynamic MOE and Internal Friction of Compression Woods in Pinus densiflora)

  • 홍병화;변희섭
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권2호
    • /
    • pp.32-36
    • /
    • 1995
  • A study was conducted to evaluate the dynamic mechanical properties (modulus of elasticity, resonant frequency and interanal friction) of compression wood in Pinus densiflora. Vibration method was used for estimation of dynamic modulus of elasticity and the values were compared to those of static bending modulus of elasticity. The results obtained are as follows: 1. The dynamic modulus of elasticity of compression wood decreased, whereas that of normal wood increased, with increasing specific gravity. 2. The resonant frequency of compression wood decreased, whereas that of normal wood increased, with increasing specific gravity. 3. The internal friction of compression wood increased with increasing specific gravity. 4. The correlation coefficients between dynamic and static moduli of elasticity in compression and normal woods were high.

  • PDF

암석의 파괴조건계수 평가 및 적용성에 관한 연구 (A Study on the Estimation and Application of Failure Coefficients of Rock)

  • 장명환;양형식
    • 한국지반공학회지:지반
    • /
    • 제14권4호
    • /
    • pp.103-116
    • /
    • 1998
  • 순수전단강도를 추정하기 위해 150 세트의 삼축시험 결과를 분석하였다. 내부마찰각은 Hoek와 Brown의 파괴조건계수 m이 증가하는데 따라 비 선형적으로 증가하였으나 순수전단강도 비례계수 1c는 비선형적으로 감소하였다. 압축강도의 전단강도에 대한 비는 내부마찰각의 비에 역비례하였다. 전단강도는 m에 반비례하였으나 내부마찰각은 비례하였다. 또 단축강도는 c에 비례하였다. 회 귀분석의 해석에 있어서 전단강도가 m과 단축압축강도의 주요 영향요소로 나타났다. 전단강도의 비례계수는 RMR의 증가에 따라 비선행적으로 증가하였으나 내부마찰각은 선형적으로 감소하였다.

  • PDF

일차파괴된 암반사면의 전단강도 및 보강설계법 고찰 (A study on the determination of shear strength and the support design of pre-failed rock slope)

  • 조태진;김영호
    • 터널과지하공간
    • /
    • 제5권2호
    • /
    • pp.104-113
    • /
    • 1995
  • Shear strength of the discontinuity on which the pre-failure of rock slope was occurred during surface excavation was measured through the direct shear test using core samples obtained in-situ. Internal friction angle was increased as the roughness of discontinuity surface(JRC) was increased. Results of the tilt test using core samples of higher JRC also showed very similar trend as those of the direct shear test. When the samples replicated from natural cores were used int he tilt test, results of friction angles showed almost perfect continuation of the residual friction angles from the direct shear test. However, when the gouge material existed in the discontinuity the internal friction angle strongly depended upon the rate of filling thickness to the height of asperity irrespective of the JRC. Based on the results of both direct shear test and tilt test internal friction angle and cohesion of discontinuity, which reflect the in-situ conditions fo pre-sliding failure and also can be used for the optimum design of support system, were assessed. Two kinds of support measures which were expected to increase the stability of rock slope were considered; lowering of slope face angle and installation of rock cable. But, it was found that the first method might lead to more unstable conditions of rock slope when the cohesion of discontinuity plane was negligibly low and in that case the support systems of any kind which could exert actual resisting force were needed to ensure the permanent stability of rock slope.

  • PDF

향판용(響板用) 오동나무재(材)의 동력학적성질(動力學的性質) (The Dynamic Mechanical Properties of Paulownia coreana Used for Sounding Boards)

  • 홍병화
    • Journal of the Korean Wood Science and Technology
    • /
    • 제13권3호
    • /
    • pp.34-40
    • /
    • 1985
  • The characteristics of Paulownia coreana wood used for sounding boards has been revealed through this study. The 80 specimens were selected from Paulownia coreana wood. The dynamic Young's modulus, the internal friction and resonant frequency of wood were measured by the method of making a rectangular bar resonate in the audio frequency range. The results obtained are summarized as follows: 1. The average values of the specific gravity, the dynamic Young's modulus and the internal friction concerning Paulownia coreana used for sounding boards are $0.252{\pm}0.022$, $(0.494{\pm}0.068){\times}10^{11}$ dyne/cm and $(7.89{\pm}1.692){\times}10^{-3}$ respectively. 2. The average values of resonant frequency, the velosity of sound, and K values are $504{\pm}24.298$ Hz, $5018{\pm}219.83$m/s, and $(9.907{\pm}2.05){\times}10^{-4}$ respectively. 3. The dynamic Young's modulus of Paulownia coreana increases with the increase of the specific gravity, and that on the contrary the internal friction decreases. 4. The dynamic Young's modulus was abruptly decreased as the moisture content of wood specimens was increased up to the fiber saturation point, and the internal friction was linearly increased as the moisture content of wood specimens were increased. 5. The vibration properties of Paulownia coreana are that the dynamic Young's modulus is fairly high, the internal friction is low, and the ratio of Young's modulus to specific gravity shows large value.

  • PDF

암반의 파괴기준에 따른 제주도 현무암의 강도정수 (Strength Parameters of Basalts in Jeju Island according to Rock Failure Criterions)

  • 양순보
    • 한국지반공학회논문집
    • /
    • 제32권3호
    • /
    • pp.15-27
    • /
    • 2016
  • 본 연구에서는 제주도 북동부 육해상, 남동부 해상 및 북서부 해상에서 채취한 현무암 암석에 대하여 삼축압축시험을 수행하였으며, 그 결과로부터 산정된 Hoek-Brown 파괴기준의 파라미터인 암석 계수 $m_i$의 특성을 살펴보았다. 그리고 Hoek-Brown 파괴기준으로부터 추정된 점착력 및 내부 마찰각과 Mohr-Coulomb 파괴기준으로부터 산정된 점착 력 및 내부 마찰각을 각각 비교 분석하였다. 그 결과 제주도 현무암 암석에 대한 Hoek-Brown 파괴기준의 암석 계수 $m_i$는 암석의 내부 마찰각과 밀접하게 연관되어 있었으며, 내부 마찰각이 증가함에 따라 급격하게 증가하였다. Hoek-Brown 파괴기준으로부터 추정된 점착력은 Mohr-Coulomb 파괴기준으로부터 산정된 점착력보다 평균적으로 약 24% 정도 과대하게 추정되고 있으며, Hoek-Brown 파괴기준으로부터 추정된 내부 마찰각은 Mohr-Coulomb 파괴기준의 내부 마찰각과 비슷한 값을 나타내고 있음을 알 수 있었다.

Influence of moisture content on main mechanical properties of expansive soil and deformation of non-equal-length double-row piles: A case study

  • Wei, Meng;Liao, Fengfan;Zhou, Kerui;Yan, Shichun;Liu, Jianguo;Wang, Peng
    • Geomechanics and Engineering
    • /
    • 제30권2호
    • /
    • pp.139-151
    • /
    • 2022
  • The mechanical properties of expansive soil are very unstable, highly sensitive to water, and thus easy to cause major engineering accidents. In this paper, the expansive soil foundation pit project of the East Huada Square in the eastern suburb of Chengdu was studied, the moisture content of the expansive soil was considered as an important factor that affecting the mechanics properties of expansive soil and the stability of the non-equal-length double-row piles in the foundation pit support. Three groups of direct shear tests were carried out and the quantitative relationships between the moisture content and shear strength τ, cohesion c, internal friction angle φ were obtained. The effect of cohesion and internal friction angle on the maximum displacement and the maximum bending moment of piles were analyzed by the finite element software MIDAS/GTS (Geotechnical and Tunnel Analysis System). Results show that the higher the moisture content, the smaller the matrix suction, and the smaller the shear strength; the cohesion and the internal friction angle are exponentially related to the moisture content, and both are negatively correlated. The maximum displacement and the maximum bending moment of the non-equal length double-row piles decrease with the increase of the cohesion and the internal friction angle. When the cohesion is greater than 33 kPa or the internal friction angle is greater than 25.5°, the maximum displacement and maximum bending moment of the piles are relatively small, however, once crossing the points (the corresponding moisture content value is 24.4%), the maximum displacement and the maximum bending moment will increase significantly. Therefore, in order to ensure the stability and safety of the foundation pit support structure of the East Huada Square, the moisture content of the expansive soil should not exceed 24.4%.

사면하부지반의 강도정수에 따른 억지말뚝 적용성 연구 (A Study on Applicability of Stabilizing Pile to Foundation Soil of Slope with Various Strength Parameters)

  • 이승현;장인성
    • 한국산학기술학회논문지
    • /
    • 제17권10호
    • /
    • pp.331-337
    • /
    • 2016
  • 높이가 5m와 10m인 사면부와 사면하부지반으로 이루어진 지반조건에 대하여 여러 가지 강도정수를 갖는 사면하부지반을 가정하고 안정해석을 수행한 결과 사면하부 끝단에 억지말뚝을 설치할 수 있는 사면하부지반의 강도정수의 범위를 얻을 수 있었고 표로써 제시하였다. 사면높이가 5m인 경우 사면하부지반의 점착력이 10kPa일 때 내부마찰각은 $15^{\circ}$인 경우까지 억지말뚝의 설치가 가능하며 점착력이 20kPa와 25kPa인 경우 내부마찰각이 $0^{\circ}$일 때만 억지말뚝의 설치가 가능하였다. 사면높이가 10m인 경우 사면하부지반의 점착력이 10kPa일 때 내부마찰각은 $20^{\circ}$인 경우까지 억지말뚝의 설치가 가능하며 점착력이 40kPa, 45kPa 그리고 50kPa인 경우에는 내부마찰각이 $0^{\circ}$인 경우만 억지말뚝의 설치가 가능함을 알 수 있었다. 가정한 사면에 적용한 억지말뚝에 대한 해석결과에 따르면 억지말뚝의 길이와 최대 휨모멘트의 크기는 내부마찰각의 존재여부에 큰 영향을 받음을 알 수 있었다. 사면하부지반의 내부마찰각이 $0^{\circ}$인 경우 필요한 억지말뚝의 길이 $D_s$와 d는 각각 내부마찰각이 $5^{\circ}$인 경우에 비해 4.6배와 8.0배 컸다. 사면하부지반의 내부마찰각이 $0^{\circ}$인 경우 억지말뚝에 발생하는 최대 휨모멘트는 내부마찰각이 $5^{\circ}$인 경우에 비해 24.6배 컸다. 억지말뚝을 적용한 사면하부지반의 내부마찰각이 $0^{\circ}$인 경우 억지말뚝의 길이 및 억지말뚝에 발생하는 최대 휨모멘트의 크기가 상당히 커서 억지말뚝의 적용을 어렵게 함을 알 수 있었다. 본 연구결과를 통해 볼 때 비배수상태에 있는 포화점토지반상에 성토를 하는 경우에는 압밀이 발생하는 시간적 여유를 갖도록 완속 성토함으로써 억지말뚝의 길이와 발생 최대 휨모멘트를 대폭적으로 감소시킬 수 있을 것으로 기대된다.

A new design chart for estimating friction angle between soil and pile materials

  • Aksoy, Huseyin Suha;Gor, Mesut;Inal, Esen
    • Geomechanics and Engineering
    • /
    • 제10권3호
    • /
    • pp.315-324
    • /
    • 2016
  • Frictional forces between soil and structural elements are of vital importance for the foundation engineering. Although numerous studies were performed about the soil-structure interaction in recent years, the approximate relations proposed in the first half of the 20th century are still used to determine the frictional forces. Throughout history, wood was often used as friction piles. Steel has started to be used in the last century. Today, alternatively these materials, FRP (fiber-reinforced polymer) piles are used extensively due to they can serve for long years under harsh environmental conditions. In this study, various ratios of low plasticity clays (CL) were added to the sand soil and compacted to standard Proctor density. Thus, soils with various internal friction angles (${\phi}$) were obtained. The skin friction angles (${\delta}$) of these soils with FRP, which is a composite material, steel (st37) and wood (pine) were determined by performing interface shear tests (IST). Based on the data obtained from the test results, a chart was proposed, which engineers can use in pile design. By means of this chart, the skin friction angles of the soils, of which only the internal friction angles are known, with FRP, steel and wood materials can be determined easily.