• Title/Summary/Keyword: Internal Dose Assessment

Search Result 109, Processing Time 0.024 seconds

Assessment of Dose Distribution using the MIRD Phantom at Uterine Cervix and Surrounding Organs in High Doserate Brachytheraphy (자궁주위 방사선 근접치료시 MIRD 팬텀을 이용한 주변장기의 피폭환경평가)

  • Lee, Yun-Jong;Nho, Young-Chang;Lee, Jai-Ki
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.4
    • /
    • pp.387-391
    • /
    • 2006
  • Computational and experimental dosimetry of Henschke applicator with respect to high dose rate brachytherapy using the MIRD phantom and a remote control afterloader were performed. A comparison of computational dosimetry was made between the simulated Monte Carlo dosimetry and GAMMADOT brachytherapy Planning system's dosimetry. Dose measurements was performed using ion chamber in a water phantom. Dose rates are calculated using Monte Carlo code MCNP4B and the GAMMADOT. Thecomputational models include the detailed geometry of Ir-192 source, tandem tube, and shielded ovoids for accurate estimation. And transit dose delivered during source extension to and retraction from a given dwell position was estimated by Monte Carlo simulations. Point doses at ICRU bladder/rectal pointswhich have been recommened by ICRU 38 was assessed. Calculated and measured dose distribution data agreed within 4% each other. The shielding effect of ovoids leads to 19% and 20% dose reduction at bladder surface and rectal points.

Towards Quantitative Assessment of Human Exposures to Indoor Radon Pollution from Groundwater

  • Donghan Yu;Lee, Han-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E2
    • /
    • pp.43-51
    • /
    • 2001
  • A report by the national research council in the United States suggested that many lung cancer deaths each year be associated with breathing radon in indoor air. Most of the indoor radon comes directly from soil beneath the basement of foundations. Recently, radon released from groundwater is found to contribute to the total inhalation risk from indoor air. This study presents the quantitative assessment of human exposures to radon released from the groundwater into indoor air. At first, a three-compartment model is developed to describe the transfer and distribution of radon released from groundwater in a house through showering, washing clothes, and flushing toilets. Then, to estimate a daily human exposure through inhalation of such radon for an adult. a physiologically-based pharmacokinetic(PBPK) model is developed. The use of a PBPK model for the inhaled radon could provide useful information regarding the distribution of radon among the organs of the human body. Indoor exposure patterns as input to the PBPK model are a more realistic situation associated with indoor radon pollution generated from a three-compartment model describing volatilization of radon from domestic water into household air. Combining the two models for inhaled radon in indoor air can be used to estimate a quantitative human exposure through the inhalation of indoor radon for adults based on two sets of exposure scenarios. The results obtained from the present study would help increase the quantitative understanding of risk assessment issues associated with the indoor radon released from groundwater.

  • PDF

Diagnostic Value of the Cobalt($^{58}Co$) Excretion Test in Iron Deficiency Anemia (철결핍성빈혈(鐵缺乏性貧血)에서 Cobalt($^{58}Co$)배설율검사(排泄率檢査)의 진단적(診斷的) 가치(價値))

  • Sihn, Hyun-Chung;Hong, Kee-Suck;Cho, Kyung-Sam;Song, In-Kyung;Koh, Chang-Soon;Lee, Mun-Ho
    • The Korean Journal of Nuclear Medicine
    • /
    • v.10 no.1
    • /
    • pp.21-34
    • /
    • 1976
  • The diagnosis of iron deficiency rests upon the correct evaluation of body iron stores. Morphological interpretation of blood film and the red cell indices are not reliable and often absent in mild iron deficiency. Serum iron levels and iron-binding capacity are more sensitive indices of iron deficiency, but they are often normal in iron depletion and mild iron deficiency anemia. They are also subject to many variables which may introduce substantial errors and influenced by many pathologic and physiologic states. Examination of the bone marrow aspirate for stainable iron has been regarded as one of the most sensitive and reliable diagnostic method for detecting iron deficiency, but this also has limitations. Thus, there is still need for a more practical, but sensitive and reliable substitute as a screening test of iron deficiency. Pollack et al. (1965) observed that the intestinal absorption of cobalt was raised in iron-deficient rats and Valberg et al. (1969) found that cobalt absorption was elevated in patients with iron deficiency. A direct correlation was demonstrated between the amounts of radioiron and radiocobalt absorbed. Unlike iron, excess cobalt was excreted by the kidney, the percentage of radioactivity in the urine being directly related to the percentage absorbed from the gastrointestinal tract. Recently a test based on the urinary excretion of an oral dose of $^{57}Co$ has been proposed as a method for detecting iron deficiency. To assess the diagnostic value of urinary cobalt excretion test cobaltous chloride labelled with $1{\mu}Ci\;of\;^{58}Co$ was given by mouth and the percentage of the test dose excreted in the urine was measured by a gamma counter. The mean 24 hour urinary cobalt excretion in control subjects with normal iron stores was 6.1% ($1.9{\sim}15.2%$). Cobalt excretion was markedly increased in patients with iron deficiency and excreted more than 29% of the dose. In contrast, patients with anemia due to causes other than iron deficiency excreted less than 27%. Hence, 24 hour urinary cobalt excretion of 27% or less in a patient with anemia suggets that the primary cause of the anemia is not iron deficiency. A value greater than 27% in an anemic subject suggests that the anemia is caused by iron deficiency. The cobalt excretion test is a simple, sensitive and accurate method for the assessment of body iron stores. It may be particularly valuable in the epidemiological studies of iron deficiency and repeated evaluations of the body iron stores.

  • PDF

The Cell Cycle Regulatory Effects of High Dose 5-fluorouracil on Breast Cancer Cell Line (유방암세포주에서 고농도 5-fluorouracil의 세포주기 조절효과)

  • Jang, Joung Soon;Yang, Jung Ill;Chang, Seho;Lee, Won Sup;Lee, Jong Seok;Ahn, Myung-Ju;Park, Byung-Kiu
    • IMMUNE NETWORK
    • /
    • v.2 no.1
    • /
    • pp.60-64
    • /
    • 2002
  • Background: Chemotherapy with 5-fluorouracil (5-FU) has been one of the mainstay in breast cancer treatment. The effects of high dose 5-FU on cell cycle regulation were studied in breast caner cells. Methods: A breast cancer cell line MCF-7 was used. Protein expressions of G1/S cyclins, $p21^{Waf1/Cip1}$, cdk2, E2F1 and retinoblastoma were tested by western blot analysis. Immunoprecipitation and immune complex kinase assay were done for the assessment of E2F1/RB interacton and the activity of cdk2 respectively. Results: $p21^{Waf1/Cip1}$ expression was barely detectable in control cells. With addition of 5-FU level of $p21^{Waf1/Cip1}$ were induced and cyclin D3 level was decreased as cell growth decreases. In accordance with increased expression of $p21^{Waf1/Cip1}$, cyclin E-associated cdk2 kinase activity was reduced. Retinoblastoma protein (RB) became dephosphorylated and E2F-1 binding activity with RB was increased. Conclusion: In this situation of high concentration of 5-FU breast cancer cells tend to be G1/S cell cycle arrested. Overexpression of $p21^{Waf1/Cip1}$ and dephosphorylation of RB may mediate the effectss of 5-FU by inhibiting E2F-1 activity, which contributes to G1/S cell cycle arrest. These results could be an indicating landmark for further study of high dose chemotherapy with 5-FU.

Determination of counting efficiency considering the biodistribution of 131I activity in the whole-body counting measurement

  • MinSeok Park ;Jaeryong Yoo;Minho Kim ;Won Il Jang ;Sunhoo Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.295-303
    • /
    • 2023
  • Whole-body counters are widely used to assess internal contamination after a nuclear accident. However, it is difficult to determine radioiodine activity due to limitations in conventional calibration phantoms. Inhaled or ingested radioiodine is heterogeneously distributed in the human body, necessitating time-dependent biodistribution for the assessment of the internal contamination caused by the radioiodine intake. This study aims at calculating counting efficiencies considering the biodistribution of 131I in whole-body counting measurement. Monte Carlo simulations with computational human phantoms were performed to calculate the whole-body counting efficiency for a realistic radioiodine distribution after its intake. The biodistributions of 131I for different age groups were computed based on biokinetic models and applied to age- and gender-specific computational phantoms to estimate counting efficiency. After calculating the whole-body counting efficiencies, the efficiency correction factors were derived as the ratio of the counting efficiencies obtained by considering a heterogeneous biodistribution of 131I over time to those obtained using the BOMAB phantom assuming a homogeneous distribution. Based on the correction factors, the internal contamination caused by 131I can be assessed using whole-body counters. These correction factors can minimize the influence of the biodistribution of 131I in whole-body counting measurement and improve the accuracy of internal dose assessment.

Assessment of Potential Radiation Dose Rates to Marine Organisms Around the Korean Peninsula

  • Lee, Dong-Myung;Lee, Jun-ho
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Background: It is very difficult to set a regulatory guidance or criteria for the protection of non-human species from the ionizing radiation, because there are no generally or internationally accepted methods for demonstrating the compliance with such criteria. It is needed that Korea develop the primary dose rate standards for the protection of both aquatic and terrestrial biota in the near future. Materials and Methods: The potential dose rates due to both external and internal radiation exposures to marine organisms such as plaice/flounder, gray mullet, and brown seaweed collected within territorial seas around the Korean Peninsula were estimated. Results and Discussion: The total dose rates to plaice/flounder, gray mullet and brown seaweed due to $^{40}K$, a primordial radionuclide in marine environment, were found to be 0.2%, 0.08% and 0.3% of approximately the values of the Derived Consideration Reference Levels (DCRLs, i.e. $1-10mGy{\cdot}d^{-1}$), respectively, as suggested by the International Commission on Radiological Protection (ICRP) publication 124. The total dose rates to marine fishes and brown seaweed due to anthropogenic radionuclides such as $^{90}Sr$, $^{137}Cs$ and $^{239+240}Pu$ were considered to be negligible compared to the total dose rate due to $^{40}K$. The external exposure to benthic fish due to all radionuclides was much higher than that of pelagic fish. Conclusion: From this study, it is recommended that the further study is required to develop a national regulatory guidance for the evaluation of doses to non-human species.

ORGAN DOSE, EFFECTIVE DOSE AND RISK ASSESSMENT FROM COMPUTED TOMOGRAPHY TO HEAD AND NECK REGION (두경부 전산화 단층촬영시의 주요 장기선량, 유효선량 및 위험도)

  • Kim Ae-Jj;Cho Bong-Hae;Nah Kyung-Soo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.25 no.1
    • /
    • pp.27-38
    • /
    • 1995
  • The organ or tissue doses were determined with head and neck phantom measurement for multiple axial scans (36 slices), multiple coronal scans (13 slices), 3 types of single axial scans(orbit, maxillary sinus and mandibular canal) and single coronal scan (maxillary sinus). For each scan sequence 30 TLDs were placed in selected sites(16 internal sites and 14 external sites) in a tissue-equivalent phantom. The exposure was made at 120kVp, 500mAs with 5 mm slice width. The results were as follows : 1. In multiple axial scans, the greatest effective dose recorded was that delivered to the thyroid glands(2.77 mSv) and the least was that received by the skin(0.05 mSv). From these data, stochastic effects were 202.2x10/sup -6/ and 3.7×10/sup -6/, respectively. 2. In multiple coronal scans, the greatest effective dose recorded was that delivered to the salivary glands(0.58 mSv) and the least was that received by the skin(0.01 mSv). From these data, stochastic effects were 42.2×10/sup -6/ and 0.7×10/sup -6/, repectively. 3. Among single axial scans, the greatest effective dose recorded was that delivered to the salivary gland(0.38 mSv) in maxillary sinus scan. From this data, stochastic effect was 27.7×10/sup -6/. 4. In single coronal scan, the greatest effective dose recorded was that delivered to the salivary gland(0.01 mSv). From this data, stochastic effect was 1.0×10/sup -6/. 5. The equivalent dose measured that delivered to the lens of the eyes was 69.64 mSv in multiple axial scan, 39.32 mSv in multiple coronal scan and 36.77 mSv in single axial scan(orbit).

  • PDF

Internal Dose Assessment of Worker by Radioactive Aerosol Generated During Mechanical Cutting of Radioactive Concrete (원전 방사성 콘크리트 기계적 절단의 방사성 에어로졸에 대한 작업자 내부피폭선량 평가)

  • Park, Jihye;Yang, Wonseok;Chae, Nakkyu;Lee, Minho;Choi, Sungyeol
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.157-167
    • /
    • 2020
  • Removing radioactive concrete is crucial in the decommissioning of nuclear power plants. However, this process generates radioactive aerosols, exposing workers to radiation. Although large amounts of radioactive concrete are generated during decommissioning, studies on the internal exposure of workers to radioactive aerosols generated from the cutting of radioactive concrete are very limited. In this study, therefore, we calculate the internal radiation doses of workers exposed to radioactive aerosols during activities such as drilling and cutting of radioactive concrete, using previous research data. The electrical-mobility-equivalent diameter measured in a previous study was converted to aerodynamic diameter using the Newton-Raphson method. Furthermore, the specific activity of each nuclide in radioactive concrete 10 years after nuclear power plants are shut down was calculated using the ORIGEN code. Eventually, we calculated the committed effective dose for each nuclide using the IMBA software. The maximum effective dose of 152Eu constituted 83.09% of the total dose; moreover, the five highest-ranked elements (152Eu, 154Eu, 60Co, 239Pu, 55Fe) constituted 99.63%. Therefore, we postulate that these major elements could be measured first for rapid radiation exposure management of workers involved in decommissioning of nuclear power plants, even if all radioactive elements in concrete are not considered.

Assessment of occupational radiation exposure of NORM scales residues from oil and gas production

  • EL Hadji Mamadou Fall;Abderrazak Nechaf;Modou Niang;Nadia Rabia;Fatou Ndoye;Ndeye Arame Boye Faye
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1757-1762
    • /
    • 2023
  • Radiological hazards from external exposure of naturally occurring radioactive materials (NORM) scales residues, generated during the extraction process of oil and gas production in southern Algeria, are evaluated. The activity concentrations of 226Ra, 232Th, and 40K were measured using high-purity gamma-ray spectrometry (GeHP). Mean activity concentration of 226Ra, 232Th and 40K, found in scale samples are 4082 ± 41, 1060 ± 38 and 568 ± 36 Bq kg-1, respectively. Radiological hazard parameters, such as radium equivalent (Raeq), external and internal hazard indices (Hex, Hin), and gamma index (Iγ) are also evaluated. All hazard parameter values were greater than the permissible and recommended limits and the average annual effective dose value exceeded the dose constraint (0.3 mSv y-1). However, for occasionally exposed workers, the dose rate of 0.65 ± 0.02 mSv y-1 is lower than recommended limit of 1 mSv y-1 for public.

Development for Improvement Methodology of Radiation Shielding Evaluation Efficiency about PWR SNF Interim Storage Facility (PWR 사용후핵연료 중간저장시설의 몬테칼로 차폐해석 방법에 대한 계산효율성 개선방안 연구)

  • Kim, Taeman;Seo, Myungwhan;Cho, Chunhyung;Cha, Gilyong;Kim, Soonyoung
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.92-100
    • /
    • 2015
  • For the purpose of improving the efficiency of the radiation impact assessment of dry interim storage facilities for the spent nuclear fuel of pressurized water reactors (PWRs), radiation impact assessment was performed after the application of sensitivity assessment according to the radiation source term designation method, development of a 2-step calculation technique, and cooling time credit. The present study successively designated radiation source terms in accordance with the cask arrangement order in the shielding building, assessed sensitivity, which affects direct dose, and confirmed that the radiation dosage of the external walls of the shielding building was dominantly affected by the two columns closest to the internal walls. In addition, in the case in which shielding buildings were introduced into storage facilities, the present study established and assessed the 2-step calculation technique, which can reduce the immense computational analysis time. Consequently, results similar to those from existing calculations were derived in approximately half the analysis time. Finally, when radiation source terms were established by adding the storage period of the storage casks successively stored in the storage facilities and the cooling period of the spent nuclear fuel, the radiation dose of the external walls of the buildings was confirmed to be approximately 40% lower than the calculated values; the cooling period was established as being identical. The present study was conducted to improve the efficiency of the Monte Carlo shielding analysis method for radiation impact assessment of interim storage facilities. If reliability is improved through the assessment of more diverse cases, the results of the present study can be used for the design of storage facilities and the establishment of site boundary standards.