• Title/Summary/Keyword: Intermolecular chain packing

Search Result 5, Processing Time 0.02 seconds

Effects of the Nitrile Group Substitution on the Gas Separation Properties of Aromatic Polyamide Membranes

  • Park, Ho-Seung;Jo, Won-Ho;Oh, Tae-Jin;Kang, Yong-Soo;Park, Hyun-Chae
    • Fibers and Polymers
    • /
    • v.1 no.2
    • /
    • pp.111-115
    • /
    • 2000
  • The effects of nitrile group substitution onto aromatic polyamide backbone on the gas permeability and permselectivity of the polymers are examined. The gas permeability of aromatic polyamides increase with increasing the content of nitrile group substitution, whereas the permselectivity decreases with increasing the nitrile group contents. The effects of chain linrearity on the permeability and permselectivity are also examined. The non-linearity of the polymers increases the permeability. These behaviors are interpreted in terms of chain packing and crystallinity of the aromatic polyamides.

  • PDF

Origin of Green Emission in Extremely Pure Oligofluorene Films: Effect of Molecular Packing

  • Kang, Ji-Hoon;Shin, Na-Yool;Jo Jung-Ho;Keivanidis Panagiotis E.;Laquai Frederic;Wegner Gerhard;Yoon, Do-Y.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.236-236
    • /
    • 2006
  • Time-resolved photoluminescence spectroscopy measurements of oligofluorenes with various side chains were studied. With extremely pure oligofluorenes, two kinds of red-shifted green emission were observed which have different origins; aggregate formation and on-chain chemical defect. The green emission around 490 nm was largely dependent upon the intermolecular interaction of oliglfuorene molecules. Moreover, by using oligofluorene with high-order liquid crystalline phase, we observed that the green emission was strongly dependent upon the molecular packing in solid films.

  • PDF

Effect of Cellulose Concentration of Cellulose/[AMIM]Cl Solution on the Liquid Crystalline Spinning

  • Kim, Su-Jin;Jang, Jin-Ho
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.51-51
    • /
    • 2012
  • Cellulose is extremely difficult to dissolve cellulose in water and most common organic solvents due to their stiff molecular structure, close chain packing and intermolecular hydrogen bonds. Recently, cellulose solutions using ionic liquids (ILs) as a green solvent have been known to form cholesteric liquid crystalline phase at high cellulose concentration. In this study, the phase transition and rheological behaviors of concentrated cellulose/[AMIM]Cl solution were investigated using polarized optical microscopy and rheometry. Studies were conducted to characterize the influence of cellulose concentration on the phase transition of the cellulose solution and the mechanical properties of the regenerated fibers spun from the anisotropic cellulose/[AMIM]Cl solutions.

  • PDF

Dyeing Study on DMF-Modified Polyesters for Morphology Characterization

  • Park, Myung-Ja
    • The International Journal of Costume Culture
    • /
    • v.5 no.2
    • /
    • pp.53-65
    • /
    • 2002
  • Morphology of polyester fiber was physically modified by solvent treatment. PET fiber was treated with N,N-dimethylformamide (DMF) at 100, 120, $140^{circ}C$ for 10 minutes without tension. The structural changes in the morphology of DMF-induced modified PET fiber were FTIR and SEM analysis. Also dyeing behavior of DMF-treated polyester fibers with various disperse dyes was studied to detect changes of amorphous area in fine structure. DMF treatment resulted in increases in total void content, degree of crystallinity, trans isomer content, chain folding, segmental mobility and molecular packing, but it resulted in decreases in amorphous orientation, intermolecular forces and individual void size through longitudinal shrinkage, lateral welling and removal of oligomers. Void-size distribution could be estimated from the dye uptake with various sizes of disperse dyes. In contrast to the large increases in dye uptake with small dye molecules, there is no and little dye uptake with the bulkiest dye, which means that void size is bigger or smaller than the volume of each dye. Diffusion rates of dye molecules showed increases. This dyeing study revealed that the disperse dyeing is very effective method for characterizing the internal morphology of polyester fiber.

  • PDF

Optical Transmittance of Polybenzoxazole Precursor (폴리벤조옥사졸 전구체의 광투과도 연구)

  • 김대겸;김종화;최길영;오재민;이무영;박동원;이광섭;진문영
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.18-27
    • /
    • 2002
  • Poly(ο-hydroxyamide)s as polybenzoxazoles precursors were synthesized by polycondensation from 2,2'-bis(3-amino-4-hydroxyphenyl) hexafluoropropane and various bis-acids. And the polymers were modified to acid-sensitive polyamides by introducing tetrahydropyran in order to impart photosensitivity. A study of optical transmittance at 365 nm, according to the chemical structure of bis-acid, revealed that the polymer derived from 4,4'-oxydibenzoic acid showed better optical transparency than those from other bis-acids. This tendency of optical transmittance could be explained by formation of charge transfer complex. In case of the polymer derived from 4,4'-oxydibenzoic acid, the electron accepting characteristic of bis-acid is reduced by introduction of electron donating group, -O-. Thus, optical transmittance increased due to the diminished formation of intramolecular charge transfer complex. In addition, the optical transmittance increased with increasing the THP content in the polymer. This is attributed to the reduced intermolecular interaction by the loosening of the packing density of the polymer chain.