• Title/Summary/Keyword: Intermittent flow

Search Result 173, Processing Time 0.029 seconds

Seasonal Ground Water Table Changes Following Forest Harvesting in Small Headwater Riparian Areas (산지계류 수변지역에서 산림벌채 후 지하수위의 계절 변화)

  • Choi, Byoung-Koo
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.4
    • /
    • pp.620-628
    • /
    • 2012
  • This study addressed the influence of forest harvesting on seasonal water table dynamics in small headwater riparian areas. Four treatments including potential Best Management Practices(BMPs) for ephemeral and intermittent streams were implemented(BMP1, BMP2, clearcut and reference). Water table measurements were obtained at bi-monthly intervals for 3 years including one year of pre- and two years of post-harvest observations. Overall, water table responses affected largely by rainfall amount. In addition, significant increases in water table levels following harvesting occurred throughout the two post-harvest years. Water table levels increased up to 28.2cm in the clearcut treatment during 2008 and up to 54.2cm in BMP2 during 2009. However, increase in water table elevation was not directly related to basal area removal despite considerable differences in basal area removed between BMP2 and clearcut treatments. Water table rises were apparent in that water table were more elevated during dry season(June through November) than during wet season(December through May). These seasonal fluctuations were presumably driven by changes in evapotranspiration caused by differences in leaf area of overstory canopy and understory following harvest.

A Study on the Performance Evaluation Measures of Traffic Signal Operation at Signalized Intersections by Utilizing Historical Data from Advanced Traveller Information System (첨단 교통 정보 시스템 누적 소통정보를 활용한 신호교차로 운영개선 효과평가를 위한 혼잡강도 지표 연구)

  • Cho, Yong-bin;Kim, Jin-tae
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.643-654
    • /
    • 2018
  • In order to understand and manage traffic flows in urban areas in the past, a variety of traffic engineering theoretical indicators such as intersection lag and highway speed have been applied. However, these theories and indicators have been developed under the constraints of traffic engineering research before the construction of intelligent transportation system. Since the ATIS system currently exists, it is necessary to introduce a separate traffic engineering technology that utilizes the data. In this paper, it is aimed to confirm whether it is applicable to intermittent flow (approach road, intersection, control group, main road axis) by using 'congestion intensity' which is already used in traffic engineering field. The results of this study are as follows: (1) The traffic signal improvement effect of urban road access road, intersection road, control group, Two verification studies were performed to verify the derived congestion intensity index. (1) verification of congestion intensity threshold value analysis and (2) crossing improvement using the congestion intensity. Through verification, it was confirmed that it is possible to apply the congestion intensity in the inter - city intermittent flow using the 5 - minute unit speed data so as to be able to escape from the existing traffic signal operation management which is past passive and manpower limit.

Development of Energy Management System for Micro-Grid with Photovoltaic and Battery system

  • Asghar, Furqan;Talha, Muhammad;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.299-305
    • /
    • 2015
  • Global environmental concerns and the ever increasing need of energy, coupled with steady progress in renewable energy technologies, are opening up new opportunities for utilization of renewable energy resources. Distributed electricity generation is a suitable option for sustainable development thanks to the load management benefits and the opportunity to provide electricity to remote areas. Solar energy being easy to harness, non-polluting and never ending is one of the best renewable energy sources for electricity generation in present and future time. Due to the random and intermittent nature of solar source, PV plants require the adoption of an energy storage and management system to compensate fluctuations and to meet the energy demand during night hours. This paper presents an efficient, economic and technical model for the design of a MPPT based grid connected PV with battery storage and management system. This system satisfies the energy demand through the PV based battery energy storage system. The aim is to present PV-BES system design and management strategy to maximize the system performance and economic profitability. PV-BES (photovoltaic based battery energy storage) system is operated in different modes to verify the system feasibility. In case of excess energy (mode 1), Li-ion batteries are charged using CC-CV mechanism effectively controlled by fuzzy logic based PID control system whereas during the time of insufficient power from PV system (mode 2), batteries are used as backup to compensate the power shortage at load and likewise other modes for different scenarios. This operational mode change in PV-BES system is implemented by State flow chart technique based on SOC, DC bus voltages and solar Irradiance. Performance of the proposed PV-BES system is verified by some simulations study. Simulation results showed that proposed system can overcome the disturbance of external environmental changes, and controls the energy flow in efficient and economical way.

A study on the peristaltic waveform of valveless PZT pump using disk type multi PZTs (다수 개 디스크 PZT 를 이용한 밸브리스 압전펌프의 연동구동 파형에 관한 연구)

  • Ham Y.B.;Park J.H.;Yun D.H.;Kim H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1824-1827
    • /
    • 2005
  • For application to micro fluid control systems such as ${\mu}TAS$ (Micro Total Analysis Systems) and DDS (Drug Delivery Systems), it is very significant to handle precise and minute flow rates with low pressure pulsation. In this study, a novel valveless piezoelectric pump using peristaltic motion with three disk type PZT actuators is presented. The newly devised pump with an effective size of $70mm{\times}60mm{\times}55mm$ has three actuator layers connected in series from inlet to outlet. The PZT actuator has a maximum displacement of 240 ${\mu}m$ and a maximum force of 1.6 N. When the driving voltage for PZT actuators is sequentially applied with a certain phase shift, the pumping is performed by peristaltic motion of liquid volume. The working fluid is shut off without the driving voltage. Three methods for sequential driving are proposed and experimentally investigated. First and second methods utilize an intermittent sinusoidal waveform with phase shift of $90{\circ}\;and\;120^{\circ}$, respectively. Third method uses a rectangular waveform with phase shift of $90^{\circ}$. A controller with multi-phase shifter is designed and fabricated. Then, frequency and voltage-flow rate characteristics and load pressure-flow rate characteristics are experimentally investigated to verify the validity of the developed pump.

  • PDF

AN OPTIMUM DESIGN STUDY OF INTERLACING NOZZLE BY ANALYZING FLUID FLOW INSIDE INTERLACING NOZZLES

  • Juraeva Makhsuda;Ryu Kyung Jin;Kim Sang Dug;Song Dong Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.93-97
    • /
    • 2005
  • Air interlacing serves to protect the yarn against damage, strengthens inter-filament compactness or cohesion, and ensures fabric consistency. The air interlacing nozzle is used to introduce intermittent nips to a filament yarn so as to improve its performance in textile processing. This study investigates the effect of interlacing nozzle geometry on the interlacing process. The geometries of interlacing nozzles with multiple air inlets located across the width of a yarn channels are investigated. The basic interlacing nozzle is the yarn channel, with a perpendicular single air inlet in the middle. The yarn channel shapes are cross sections with semicircular or rectangular shapes. This paper presents three doubled sub air inlets with main air inlet and one of them is slightly inclined doubled sub air inlets with main air inlet. The compressed air coming out from the inlet hits the opposing wall of the yarn channel, divides into two branches, flows trough the top side of yarn channel, joins with the compressed air coming out from the sub air inlet and then creates two free jets at both ends of the yarn channel. The compressed air moves in the shape of two opposing directional vortices. The CFD-FASTRAN was used to perform steady simulations of impinging jet flow inside of the interlace nozzles. The vortical structure and the flow pattern such as pressure contour, particle traces, velocity vector plots inside of interlace nozzle geometry are discussed in this paper.

  • PDF

Development of Three-dimensional Thermo-fluid Numerical Model for Steam Drum of a Basic Oxygen Furnace (순산소 전로의 증기드럼 내의 3차원 열 유동 해석모델 개발)

  • Jeong, Soo-Jin;Moon, Seong-Joon;Jang, Won-Joon;Kho, Suntak;Kwak, Hotaek
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.479-486
    • /
    • 2016
  • The efficient steam drum should be required to reduce carbon oxide emissions and heat recovery in oxygen converter hood system. However, steam generation is limited to the time of the oxygen blowing period, which is intermittent or cyclical in operation of steel-making process. Thus, steam drum should be optimized for an effective steam generation during the oxygen blowing portion of the converter cycle. In this study, a three-dimensional computational fluid dynamics (CFD) model has been developed to describe the impacts of changing various operating conditions and geometric shape on thermo-fluid characteristics and performance of the steam drum. This model encompasses not only fluid flow and heat transfer but also evaporation and condensation at the interfacial surface in the steam drum by using VOF (Volume of Fluid) method. To validate the prediction performance of this model, comparison of the steam flow rate between numerical and experimental result has been performed, resulting in the accuracy of the relative error by less than 3.2%.

A Study on the Development and Performance Test of Supersonic Wind Tunnel for Education (교육용 초음속 풍동 개발 및 성능검증에 관한 연구)

  • Lee, Jin-Ho;Huh, Choul-Jun;Bae, Ki-Joon;Bae, Yung-Woo;Byun, Yung-Hwan;Lee, Jae-Woo;Chang, Jo-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.129-137
    • /
    • 2004
  • A small size - low priced supersonic wind tunnel of which test section size is 30mm by 35.6mm and run time is 20sec is developed. This educational supersonic wind tunnel is an intermittent blowdown type with an exchangeable nozzle block. In this study, the proper sized and low priced commercial parts are used to reduce the total cost of supersonic wind tunnel. A nozzle design and small supersonic wind tunnel design process has been established, and it is confirmed that a given supersonic flow field has been obtained and proved by experiment.

Application of tube-type ceramic microfiltration membrane for post-treatment of effluent from biological wastewater treatment process using phase separation

  • Son, Dong-Jin;Kim, Woo-Yeol;Yun, Chan-Young;Kim, Dae-Gun;Chang, Duk;Sunwoo, Young;Hong, Ki-Ho
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.377-383
    • /
    • 2017
  • A tube-type ceramic membrane for microfiltration was developed, and the membrane module comprised of three membranes was also applied to biological carbon and nitrogen removal processes for post-treatment. Manufacturing the microfiltration membrane was successful with the structure and boundary of the coated and support layers within the membrane module clearly observable. Total kjeldahl nitrogen removal from effluent was additionally achieved through the elimination of solids containing organic nitrogen by use of the ceramic membrane module. Removal of suspended solids and colloidal substances were noticeably improved after membrane filtration, and the filtration function of the ceramic membrane could also easily be recovered by physical cleaning. By using the ceramic membrane module, the system showed average removals of organics, nitrogen, and solids up to 98%, 80% and 99.9%, respectively. Thus, this microfiltration system appears to be an alternative and flexible option for existing biological nutrient removal processes suffering from poor settling performance due to the use of a clarifier.

Critical Thermal Maximum (CTM) of Cultured Black Rockfish, Sebastes schlegeli

  • Kim Wan-Soo;Yoon Seong-Jin;Gil Joon-Woo
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.2
    • /
    • pp.59-65
    • /
    • 2003
  • The critical thermal maximum (CTM) of black rockfish, Sebastes schlegeli, was evaluated. Black rockfish were acclimated at $24^{\circ}C$, and then exposed to temperatures from 24 to $33^{\circ}C$. Black rockfish were kept in constant darkness and subjected to a gradual temperature increase $(1 ^{\circ}C\;12^{-1})$. The oxygen consumption rate (OCR) was measured using an automatic intermittent­flow-respirometer (AIFR) during the exposure period (from 119.3 to 143.5 h). The OCR increased from 94.5 to 214.2mL $O_2 kg^{-1}\;ww\;h^{-1}$ as the temperature rose from 24 to $29.4-30.9^{\circ}C$. Subsequently, the OCR increased abruptly, reaching 245.8-412.7mL $O_2 kg^{-1}\;ww\;h^{-1}$ at $32^{\circ}C$. This study suggests that the CTM for black rockfish is $29.4-30.9^{\circ}C$ when temperature is increased at $1^{\circ}C\;12h^{-1}$ following acclimation at $24^{\circ}C$.

Optimum Operation of a PVDF-type Hollow Fiber Membrane Bioreactor for Continuous Sewage Treatment

  • Shin, Choon-Hwan
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1315-1322
    • /
    • 2010
  • A membrane bioreactor (MBR) was designed using polyvinylidene fluoride(PVDF)-type hollow fiber membrane modules with a treatment capacity of 10 ton/day. A pilot plant was installed in a sewage treatment plant and was operated with an intermittent aeration method which avoids any concentration gradient of suspended solids (SS) in the MBR. For continuous operation, the pilot plant was first tested with influent (mixed liquor suspended solid:MLSS of 1000-2000 mg/L) of aeration tanks in the sewage treatment plant. The MBR was pre-treated with washing water, 10% ethanol solution, 5% NaOCl solution and finally washing water, one after another. To demonstrate the effect of the MBR on sewage treatment, compared with conventional activated sludge processes, we investigated the relationships among permeate amount (LMH), change in operation conditions, influent MLSS level and sludge production. It was found that the optimum aeration rate and suction pressure were $0.3\;m^3$/min and 30~31 cmHg, respectively. Under stable conditions in aeration, suction pressure, influent flow rate and drainage, the SS removal efficiency was more than 99.99% even when the MLSS loading rate changes. Compared with conventional activated sludge processes, the MBR was more effective in cost reduction by 27% based on permeate amount and by 51.5% on sludge production.