• Title/Summary/Keyword: Intermittent aeration

Search Result 78, Processing Time 0.021 seconds

미생물을 이용한 아라키돈산의 생산기술 개발

  • Park, Chang-Yeol;Hwang, Byeong-Hui;Yu, Yeon-U;Park, Jang-Seo
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.91-94
    • /
    • 2002
  • Arachidonic acid is a polyunsaturated fatty acid(PUFA) containing twenty carbon atoms with four double bonds. The family of w-6 PUFA, including arachidonic acid as well as r-linoleic acid, was served as intermediates in the formation of several key prostaglandin and leukotrienes. Several fungal strains of the genus Mortierella accumulate high amounts of arachidonic acid. In this study experiments were carried out to optimize the culture conditions for the mass production of fungus Mortierella alpina DSA -12 and lipid production with high proportion of polyunsaturated fatty acids, especially arachidonic acid. The batch culture was carried out in 500 L fermenter containing 50 g/L glucose, 18 g/L corn-steep powder and 100 mg/L MnS04 under $25^{\circ}C$, aeration rate of 0.5 vvm and agitation speed of 200 rpm without pH control. As a result, we could be obtained 22 g/L of cell mass with high contents of lipid 12.1 g/L) and arachidonic acid (5.1 g/L) The intermittent fed-batch culture was performed in the medium containing 20 g/L glucose and 10 g/L corn-steep powder. The final glucose concentration was 170 g/L and pH was maintained at 5.5 ${\sim}$ 6.0 by adding 14% ammonia solution. It was shown relatively high cell concentration (70.5 g/L) with high contents of lipid (45.8 g/L) and arachidonic acid 08.3 g/L). Therefore, when compared to batch cultures, the high concentration of arachidonic acid could be obtained by fed-batch culture using M. alpina DSA -12. These results imply that the fed-batch culture of M. alpina DSA -12 was feasible in industrial purpose and could be employed in the commercial production of arachidonic acid.

  • PDF

Performance Evaluation of Advanced Municipal Wastewater Treatment by Advanced Phase Isolation Ditch (APID) Process (Advanced Phase Isolation Ditch 공정에 의한 하수 고도처리 성능평가)

  • An, Sang-Woo;Kwak, Sung-Keun;Yoon, Yung-Han;Chung, Mu-Keun;Park, Jae-Roh;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.618-625
    • /
    • 2008
  • Advanced Phase Isolation Ditch (APID) process was studied to develop economic retrofitting technology, for the plants where retrofitting of common activated sludge process is required. In this study, to evaluate the effluent BOD, SS, T-N, and T-P concentrations as process capable and stable parameters for treating municipal wastewater, a demonstration plant was installed and operated in the existing sewage treatment plant of P city. During this study, the average effluent BOD, SS, T-N, and T-P concentrations were 4.56, 5.20, 9.30, and 1.75 mg/L at the conventional mode and 3.95, 3.17, 7.65, and 1.18 mg/L at the modified mode. The modified mode (BOD: 3.69, SS: 3.19, T-N: 1.27, and T-P: 0.69) increased the process capability more than the conventional mode (BOD: 1.80, SS: 1.05, T-N: 2.17, and T-P: 0.15) in this study. If process capability over 1.0, this process is capable and stable to treat wastewater. Therefore, newly developed APID process with modified intermittent aeration mode can be one of the useful processes for stable organic matter and nutrients removal.

Optimization of Nitrogen and Phosphorus Removal of Temporal and Spatial Isolation Process by Model Simulation System (시공간 동시분할 공정 시뮬레이션을 통한 질소 및 인 제거 최적화 방안)

  • Ryu, Dongjin;Chang, Duk;Shin, Hyungsoo;Park, Sangmin;Hong, Kiho;Kim, Sooyoung;Kim, Myoungjun
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.206-215
    • /
    • 2007
  • The objective of this study was to establish the optimal system operating strategies for nitrogen and phosphorus removal through model simulation system built for advanced wastewater treatment targeting on simultaneous temporal/special phase isolation BNR process. The simulation system was built with unit process modules using object modules in GPS-X code. The system was well verified by field experiment data. Simulation study was carried out to investigate performance response to design and operation parameters, i.e. hydraulic retention time (HRT), solids retention time (SRT), and cycle time. The process operated at HRTs of 10~15 hours, longer SRTs, and cycle time of 2 hours showed optimal removal of nitrogen. The HRTs of 10~15 hours, SRTs of 20~25 days, and longer cycle time was optimal for phosphorus removal. Both simulation and field studies showed that optimal operating strategies satisfying both the best nitrogen and phosphorus removals include HRTs ranged 10~15 hours, SRTs ranged 20~25 days, and cycle times of 4~8 hours. The simulation system with modularization of generalized components in BNR processes was, therefore, believed to be a powerful tool for establishing optimal strategies of advanced wastewater treatment.

Study on the Recycled Compositing System for Reducing Bulking Agent Cost (부자재 비용절감을 위한 순환퇴비화 시스템에 관한 연구)

  • 최명환;홍지형;박금주;최원춘
    • Journal of Animal Environmental Science
    • /
    • v.6 no.3
    • /
    • pp.191-199
    • /
    • 2000
  • This study was initiated to investigate the influence of biophysical condition on the composting characteristics, and conducted to develop technology for using recycled compost as a bulking agent cost to reduce operating cost. To methods of aeration, continuous aeration (CA: run No. I) and intermittent aeration (IA: run No. 2) were performed with three 12.3 liter laboratory scale vessels for ten days. Manure and rice hulls were mixed for thirst trial (I), rice hulls and recycled compost after first trial were mixed for second trial (II), dairy manure and only recycled compost after second trial were mixed for third trial (III). During the composting process, temperatures of the compost mass and ammonia emissions were measured. The quality and maturity of compost were ascertained by examining the characteristics and composition of the compost. Also, loss of mass was determined by measuring the mass of materials in the vessels before and after composting. The results in this study are as follows: 1. The periods of optimum temperature ($>55^{\circ}C$) to kill pathogens were maintained from 38 to 78 hours for CA and from 60 to 98 hours for IA. 2. The more recycled compost mixed, the more ammonia emitted. The maximum ammonia emissions were 287 ppm at CA and 420 ppm at IA. 3. Biofiltration system was required for the compo sting system using only recycled compost as an amendment, because the ammonia emissions was produced above 100 ppm at the end of composting process. 4. The quality and maturity of compost: - Fresh compost, were required drying, because moisture contents of the compost were approximately 70% in all tests. - The pH values were observed to rise smoothly, from 7.9 to 8.3 at CA and from 8.4 to 8.6 at IA. The CfN ratios of the fresh compost were ranged form 21.05 to 16.42 for CA and from 22.81 to 14.75 for IA. The final C/N ratios for test II and III were below 20.were below 20.

  • PDF

Leachate Treatment using Intermittently Aerated BAC-Fluidizing Bed (간헐폭기 생물활성탄 유동상에 의한 매립지침출수 처리)

  • Kim, Kyu Yeon;Lee, Dong Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.136-147
    • /
    • 2005
  • Leachate from landfill sites contains high organics, chloride and ammonium nitrogen in concentration which might be potentially major pollutants to surface and groundwater environment. Most of landfill leachate treatment plants in Korea consist of biological processes to remove BOD and nitrogen. However, the efficiencies of refractory organics removal, nitrification and denitrification have not met frequently the national effluent regulation of wastewater treatment facility, especially in winter season. Simultaneous removal of organics and nitrogen from leachate is strongly necessitated to meet the national regulation on effluents from leachate treatment facilities. The intermittently aerated biological activated carbon fluidized bed(IABACFB) process was applied to treat real landfill leachates containing refractory organics and high concentration of ammonium nitrogen. The IABACFB reactor consisted of a single bed in which BAC fluidizing and an aerating column. The fluidized bed is intermittently aerated through the blower located at the aerating column. Experiments were performed to evaluate the applicability of Intermittently Aerated BACFB for simultaneous removal of refractory organic carbon and ammonium nitrogen of leachate. Organics and ammonia nitrogen($NH{_4}{^+}-N$)are oxidized during the aerobic stage, and nitrite-nitrate nitrogen($NO{_x}{^-}-N$) are removed to nitrogen gas through denitrification reaction during anoxic state. The IABACFB reactor condition reached a steady state within 40 days since the reactors had been operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) simultaneously than the mode of 30 min.-On/90 min.-OFF. The average removal efficiencies of TOC, the refractory organic carbon, and the average efficiencies of nitrification and denitrification were 90%, 75%, 80%, 95%, respectively.

  • PDF

Pig slurry treatment by the pilot scale hybrid multi-stage unit system (HMUS) followed by sequencing batch reactor (SBR) (HMUS와 SBR 반응조를 이용한 축분처리에 관한 연구)

  • Lee, Young-Shin;Han, Gee-Bong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.2
    • /
    • pp.63-70
    • /
    • 2013
  • Experiments in a pilot-scale hybrid multi-stage unit system (HMUS) combination of ATAD and EGSB followed by SBR process for pig slurry treatment were conducted to demonstrate the feasibility of using autothermal thermophilic aerobic digestion (ATAD) and expended granular sludge bed (EGSB) followed by sequencing batch reactor (SBR) system. Contaminants in pig slurry with high organic matter, nitrogen (N) and phosphorus (P) content were completely removed in the combined process. The highest removal rate for CODcr among contaminants in the feed pig slurry was attained by about 43.3% in ATAD unit process. Also TS removal rate of 96.5% was attained and the highest in the next coagulation unit process. The highest removal rate of CODcr under operating parameter conditions of OLR(organic loading rate), 3-6Kg $COD/m^3{\cdot}day$ and line velocity, 1.5-4m/h was earned at 3days of HRT. The disinfection of pathogens was effective at 50,000mg/L of TS in ATAD unit process. Biogas production per organic removal was $2.3{\sim}8.5m^3/kgTS{\cdot}d$ (average $5.2m^3/kgTS{\cdot}d$) in EGSB unit process. The average removal rates of CODcr 71.7%, TS 64.1%, TN 45.9%, and TP 50.4% were earned in the intermittent aeration SBR unit process.

Emission of $CO_2$ and $NH_3$ from Mixed Composting Cattle Manure with Rice Hull by Static Whindrow and Aerated Static Pile Methods, and Grow of Tomato on It under Greenhouse Condition (우분뇨와 왕겨 혼합물의 정치식과 통기퇴적식 퇴비화 과정에서 $CO_2$$NH_3$ 가스 발생과 토마토 생육)

  • Sohn, Bo-Kyoon;Hong, Ji-Hyung;Park, Keum-Joo;Yang, Won-Mo;Kim, Kil-Yong;Rim, Yo-Sup
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.119-123
    • /
    • 1997
  • This study was performed to evaluate the influence of composting process with an intermittent aeration on the variation of rhizosphere soil temperature, $CO_2$ and $NH_3$ release, and the growth reponse of tomato plantlet in traditional and composting greenhouse. As the temperature of composting materials increased, rhizosphere soil temperature in 30cm depth rose up to $32^{\circ}C$ at one week after introduction. This was $18^{\circ}C$ higher than that of traditional greenhouse. After 20 days of active composting, temperature of rhizosphere soil started to decrease and remained constant at $23^{\circ}C$ after 35 days. For the traditional greenhouse, the averaged temperature ranged at $14{\sim}15^{\circ}C$. This results showed that composting greenhouse had the greater effect on increasing the underground temperature. Average value of evoluted $CO_2$ from the composting greenhouse for 70 days was $782{\sim}1154ppm$. This was $1.7{\sim}2.6$ times higher than that of the traditional greenhouse with an average of $440{\sim}462ppm$. $NH_3$ release was highest during $2{\sim}10$ days in intermittent aerated composting and reached to 134 ppm maximum on the 5th day, then decreased rapidly, and maintained at $3{\sim}4ppm$ after 17 days. Increased photosynthesis due to the $CO_2$ gas and a favorable rhizosphere environment due to the increased underground temperature resulted in improved growth, yield, and Brix degree of tomato fruit.

  • PDF

Demonstration and Operation of Pilot Plant for Short-circuit Nitrogen Process for Economic Treatment of High Concentration Nitrogen Wastewater (고농도 질소함유폐수의 경제적 처리를 위한 단축질소공정 파일럿플랜트 실증화 및 운영 결과)

  • Lee, Jae Myung;Jeon, Ji-hyeong;Choi, Hong-bok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.1
    • /
    • pp.53-64
    • /
    • 2020
  • A 2㎥/d combined wastewater treatment pilot plant containing the multi-stage vertical stacking type nitrification reactor was installed and operated for more than 1 year under the operating conditions of the short-circuit nitrogen process (pH 8, DO 1mg/L and Internal return rate 4Q from nitrification to denitrification reactor). For economically the combination treatment of food wastewater and the leachate from a landfill, the optimal combination ratio was operated by adjusting the food wastewater with the minimum oil content to 5-25% of the total throughput. The main treatment efficiency of the three-phase centrifugal separator which was introduced to effectively separate solids and oil from the food wastewater was about 52% of SS from 116,000mg/L to 55,700mg/L, and about 48% of normal hexane (NH) from 53,200mg to 27,800 mg/L. During the operational period, the average removal efficiency in the combined wastewater treatment process of BOD was 99.3%, CODcr 94.2%, CODmn 90%, SS 70.1%, T-N 85.8%, and T-P 99.2%. The average concentrations of BOD, CODcr, T-N, and T-P of the treated water were all satisfied with the discharge quality standard for landfill leachate ("Na" region), and SS was satisfied after applying the membrane process. On-site leachate had a relatively high nitrite nitrogen content in the combined wastewater due to intermittent aeration of the equalization tanks and different monthly discharges. Nevertheless nitrite nitrogen was accumulated, denitrification from nitrite nitrogen was observed rather than denitrification after complete nitrification. The average input of anti-forming chemical during the operation period is about 2L/d, which seems to be economical compared to the input of methanol required to treat the same wastewater.