• Title/Summary/Keyword: Intermittent aeration

Search Result 77, Processing Time 0.021 seconds

Effects of membrane orientation on permeate flux performance in a submerged membrane bioreactor

  • Lee, Tsun Ho;Young, Stephanie
    • Membrane and Water Treatment
    • /
    • v.3 no.3
    • /
    • pp.141-149
    • /
    • 2012
  • The aeration provided in a Submerged Membrane Bioreactor (SMBR) improves membrane filtration by creating turbulence on the membrane surface and reducing membrane resistance. However, conventional hollow fiber membrane modules are generally packed in a vertical orientation which limits membrane scouring efficiency, especially when aeration is provided in the axial direction. In the present research, 3 innovative hollow-fiber membrane modules, each with a different membrane orientation, were developed to improve membrane scouring efficiency and enhance permeate flux. Pilot testing was performed to investigate the permeate flux versus time relationship over a 7-day period under different intermittent modes. The results indicated that the best module experienced an overall permeate flux decline of 3.3% after 7 days; the other two modules declined by 13.3% and 18.3%. The lower percentage of permeate flux decline indicated that permeate productivity could be sustained for a longer period of time. As a result, the operational costs associated with membrane cleaning and membrane replacement could be reduced over the lifespan of the module.

Effect of Aeration on Nitrous Oxide ($N_2O$) Emission from Nitrogen-Removing Sequencing Batch Reactors

  • Kim, Dong-Jin;Kim, Yuri
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.99-105
    • /
    • 2013
  • In this study, nitrous oxide ($N_2O$) emission was compared between the operations of two different sequencing batch reactors, conventional sequencing batch reactor (CNVSBR) and simultaneous nitrification and denitrification sequencing batch reactor (SND-SBR), using synthetic wastewater. The CNV-SBR consisted of anoxic (denitrification) and aerobic phases, whereas the SND-SBR consisted of a microaerobic (low dissolved oxygen concentration) phase, which was achieved by intermittent aeration for simultaneous nitrification and denitrification. The CNV-SBR emitted 3.9 mg of $N_2O$-N in the denitrification phase and 1.6 mg of $N_2O$-N in the nitrification phase, resulting in a total emission of 5.5mg from 432mg of $NH_4^+$-N input. In contrast, the SND-SBR emitted 26.2mg of $N_2O$-N under the microaerobic condition, which was about 5 times higher than the emission obtained with the CNV-SBR at the same $NH_4^+$-N input. From the $N_2O$ yield based on $NH_4^+$-N input, the microaerobic condition produced the highest yield (6.1%), followed by the anoxic (0.9%) and aerobic (0.4%) conditions. It is thought that an appropriate dissolved oxygen level is critical for reducing $N_2O$ emission during nitrification and denitrification at wastewater treatment plants.

The Effect of Continuous and Intermittent Aeration on Hog Manure Composting and Odor Control through Fresh Compost (연속 및 간헐통기가 돈분 퇴비화 및 생퇴비 탈취에 미치는 영향)

  • J. H. Hong;Park, B. M.;Park, W. L.
    • Journal of Biosystems Engineering
    • /
    • v.23 no.1
    • /
    • pp.31-48
    • /
    • 1998
  • 가축분뇨, 음식쓰레기 둥의 유기성 고형 폐기물의 퇴비화처리 과정의 성능 향상과 암모니아 가스 발생을 저감화 하려는 연구의 일환으로서 파이로트 규모의 원통형 회분식 분해조 및 숙성조를 설계, 제작하여 퇴비화 성능과 탈취 효과를 분석하였다. 고형퇴비화 처리에 미치는 주요요인은 초기재료의 수분, 탄질비, 수소이온농도, 발효온도 및 통기조건 등이다. 돈분에 부자재인 톱밥을 혼합하여 초기 재료의 수분, 탄질비, 수소이온농도 등을 동일한 재료로서 같은 수준에 유지하고 연속통기와 간헐통기 방식으로 퇴비화하는 동안에 분해 및 숙성단계의 부위별 발효온도의 변화, 산소흡수 및 탄산가스 배출농도의 변동, 평균통기량, 재료의 평균온도 변화, 암모니아가스 배출농도의 변화 등을 분해 및 숙성 전기간을 통해 측정하고 초기재료와 숙성재료의 주요 이화학적 성분을 분석하여 퇴비화 성능과 회비 탈취 효율을 비교하였다. 주요 연구결과는 다음과 같다. 1. 숙성과정 8일 이후의 암모니아가스 탈취효율은 연속통기법이 90%이고, 간헐통기법이 70%였으며, 분해 및 숙성과정의 발효온도, 탄산가스 발생, 암모니아가스 배출농도 및 숙성회비의 성분 둥의 결과로서 판단할 때 에 퇴비 화 소요기 간은 6주간이었다. 2. 탄산가스 배출농도 변화로서 간헐통기 퇴비화 방식은 연속통기법에 비하여 분해과정이 7일 정도 빠르고, 숙성과정이 10일 정도 단축되었으며 암모니아가스 농도도 적게 나타나고 있었다. 3. 퇴비화 분해과정이 지난 후 숙성과정 도입단계에서 퇴비재료의 혼합 교반에 따른 재료의 고온상승으로 인한 암모니아가스의 고농도화 현상의 억제대책이 필요하다고 판단되었다.

  • PDF

Effects of Hydraulic Retention Time and Cycle Time on the Sewage Treatment of Intermittently Aerated Nonwoven Fabric Filter Bioreactor (간헐포기식 부직포 여과막 생물반응조에서 체류시간 및 주기시간이 하수처리에 미치는 영향)

  • Kim, Taek-Su;Bae, Min-Su;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 2005
  • This study was carried out to investigate the removal efficiency of an intermittently aerated nonwoven fabric filter bioreactor fed continuously with domestic sewage. The hydraulic retention time(HRT) of the reactor was reduced from 12 hrs to 10 hrs to 8 hrs during an experimental period of 17 months. In order to search an optimum aeration/nonaeration time ratio for the nitrogen removal at each HRT, the cycle times of 3, 2 and 1 hr were tested at the aeration/nonaeration time ratio of 1. Then, the aeration/nonaeration time ratio was changed from 50 min/70 min to 40 min/80 min to 30 min/90 min at the cycle time of 2 hr which showed the best nitrogen removal. During the experimental period, the effluent SS concentration was always below 1.2 mg/L with more than 95% of BOD removal efficiency. The highest nitrogen removal of 90.1% was observed at the aeration/nonaeration time ratio of 40 min/80 min at the HRT of 10 hr. Oxidation-reduction potential could represent the degree of the nitrification and denitrification reaction in the reactor.

The Rffect of Sludge Acclimation Conditions and Contact Load on Phosphorus and Organic Substrates Behanio Under Anaerobic Conditions (슬러지 순화조건과 접촉부하가 혐기상태에서 인과 유기물의 거동에 미치는 영향)

  • 박동근
    • Journal of Environmental Science International
    • /
    • v.3 no.4
    • /
    • pp.427-437
    • /
    • 1994
  • Batch experiments were performed to evaluate the effect of sludge acclimation and contact load on the behavior of phosphorus and organic substrates under anaerobic conditions. Four different sludges were acclimated in the sequencing batch reactors operated by intermittent aeration. All the experiments performed in a bench scale have shown the following results: 1. The unreleaseable phosphorus contents for four different sludges are the range of 16 mg P/g SS to 24 mg P/g SS, depending on the sludge acclimation conditions. 2. All the specific substrate uptake rates(SSUR) are expressed in the first order equation for releaseable phosphorus contents. The reaction rate coefficient k, has the values of 4.0, 8.9, and 13.8 mg COD/mg P/hr, depending on the contact load and slut식e species. 3. As reaction proceeds, the ratios of $\delta$P to -$\delta$COD at high contact load are almost constant in the range of 0.10 to 0.14, but at low contact load, they increase from 0.08 to 0.27.

  • PDF

Red Pigment Overproduction by Fed-Batch Culture of Monascus anka (Monascus anka로부터 유기배양에 의한 적색소의 대량생산)

  • 김희구;박근태;손홍주
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.6
    • /
    • pp.617-621
    • /
    • 1998
  • The production of red pigment from glucose by fed-batch culture of Monascus anka was investigated. In batch culture using fermentor, 200 rpm of agitation speed, 1vvm of aeration volume, and 10% (v/v) of inoculum size were optimal, respectively. The red pigment production was increased by removal of wall-attached mycelium. In an intermittent feeding fed-batch culture, dry cell weight increased to 30 g/l, adn the red pigment content reached 350 of absorbance at 495nm. In a continuous feeding fed-batch culture, dry cell weight increased to 22g/l, and the red pigment content reached 190 of absorbance at 495nm.

  • PDF

Rational budgeting approach as a nutrient management tool for mixed crop-swine farms in Korea

  • Reza, Arif;Shim, Soomin;Kim, Seungsoo;Ahn, Sungil;Won, Seunggun;Ra, Changsix
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1520-1532
    • /
    • 2020
  • Objective: Due to rapid economic return, mixed crop-swine farming systems in Korea have become more intensive. Intensive farming practices often cause nutrient surpluses and lead to environmental pollution. Nutrient budgets can be used to evaluate the environmental impact and as a regulatory policy instrument for nutrient management. This study was conducted to select a nutrient budgeting approach applicable to the mixed crop-swine farms in Korea and suggest an effective manure treatment method to reduce on-farm nutrient production. Methods: In this study, we compared current and ideal gross nutrient balance (GNB) approaches of Organisation for Economic Co-operation and Development and soil system budget (SSB) approach with reference to on-farm manure treatment processes. Data obtained from farm census and published literature were used to develop the farm nutrient budgets. Results: The average nitrogen (N) and phosphorus (P) surpluses were approximately 11 times and over 7 times respectively higher in the GNB approaches than the SSB. After solid-liquid separation of manure, during liquid composting a change in aeration method from intermittent to continuous reduced the N and P loading about 50% and 47%, respectively. Although changing in solid composting method from turning only to turning+aeration improved the N removal efficiency by 30.5%, not much improvement in P removal efficiency was observed. Conclusion: Although the GNB approaches depict the impact of nutrients produced in the mixed crop-swine farms on the overall agricultural environment, the SSB approach shows the partitioning among different nutrient loss pathways and storage of nutrients within the soil system; thus, can help design sustainable nutrient management plans for the mixed cropswine farms. The study also suggests that continuous aeration for liquid composting and turning+aeration for solid composting can reduce nutrient loading to the soil.

Nutrient variations from swine manure to agricultural land

  • Won, Seunggun;You, Byung-Gu;Shim, Soomin;Ahmed, Naveed;Choi, Yoon-Seok;Ra, Changsix
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.763-772
    • /
    • 2018
  • Objective: Swine manure in Korea is separated into solid and liquid phases which are composted separately and then applied on land. The nutrient accumulation in soil has been a big issue in Korea but the basic investigation about nutrient input on arable land has not been achieved in detail. Within the nutrient production from livestock at the national level, most values are calculated by multiplication of the number of animals with the excreta unit per animal. However, the actual amount of nutrients from swine manure may be totally different with the nutrients applied to soil since livestock breeding systems are not the same with each country. Methods: This study investigated 15 farms producing solid compost and 14 farms producing liquid compost. Composting for solid phase used the Turning+Aeration (TA) or Turning (T) only methods, while liquid phase aeration composting was achieved by continuous (CA), intermittent (IA), or no aeration (NA). Three scenarios were constructed for investigating solid compost: i) farm investigation, ii) reference study, and iii) theoretical P changes (${\Delta}P=0$), whereas an experiment for water evaporation was conducted for analyzing liquid compost. Results: In farm investigation, weight loss rates of 62% and 63% were obtained for TA and T, respectively, while evaporation rates for liquid compost were 8.75, 7.27, and $5.14L/m^2{\cdot}d$ for CA, IA, and NA, respectively. Farm investigation provided with the combined nutrient load (solid+liquid) of VS, N, and P of 117.6, 7.2, and $2.7kg/head{\cdot}yr$. Nutrient load calculated from farm investigation is about two times higher than the calculated with reference documents. Conclusion: The nutrient loading coefficients from one swine (solid+liquid) were (volatile solids, 0.79; nitrogen, 0.53; phosphorus, 0.71) with nutrient loss of 21%, 47%, and 29%, respectively. The nutrient count from livestock manure using the excretion unit has probably been overestimated without consideration of the nutrient loss.

Determination of Oxygen Transfer Coefficient in Fed-Batch Culture of Streptomyces avermitilis with Concentrated Medium Control (농축 배지 조절 유가식 배양에 의한 Streptomyces avermitilis의 산소전달계수 측정)

  • 오종현;전계택;정요섭
    • KSBB Journal
    • /
    • v.16 no.5
    • /
    • pp.516-522
    • /
    • 2001
  • The large-scale production of antibiotics by filamentous mycelial organism requires and adequate supply of dissolved oxygen. In terms of productivity, it means that oxygen transfer is the rate-limiting step. Therefore, the oxygen transfer coefficients(K$\_$L/A) were determined in a broth involving a filamentous mycelial organism such as Streptomyces avermitilis for use in fermentations. To determine (K$\_$L/A) inn a stirred vessel, a great deal of effort is required to provide all the cells with a sufficient oxygen supply. To overcome the oxygen limitation in a batch culture, a fed-batch culture was applied to control the growth rate by an intermittent supply of nutrients. Thus, it was possible to maintain a suitable dissolved oxygen concentration at a low agitation rate. The optimal agitation speed was 350 rpm at low cell concentrations (below 7 g/L) by considering the efficiency of agitation and shear stress. The (K$\_$L/A) was found to decrease from 64.26 to 29.21h.$\^$-1/ when the biomass concentration was increased from 9.82 to 12.06 g/L. In addition, and increase in viscosity was also observed during the growth phase. By comparing the (K$\_$L/A) values for the various agitation and aeration rates, it was found that the effect of an increase in (K$\_$L/A) by aeration was reduced dramatically at high biomass concentrations. However, this effect was not observed when altering the agitation rate. This suggests that controlling the dissolved oxygen concentration by altering the agitation rate was more efficient than increase the aeration rate.

  • PDF

Treatment of Food Garbage Using a Treatment Reactor and Microbial Consortium (발효소멸기를 이용한 음식물 쓰레기의 감량 및 악취제거)

  • Koh, Rae-Hyun;Lee, Kang-Hyoung;Yoo, Jin-Soo;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.306-312
    • /
    • 2006
  • Disposal of food garbage in most large cities is very troublesome task. To date, microbiological treatment has been received an attention as a garbage decomposition process. In this study, the inoculation effect of some cellulase, amylase and protease-producing bacteria and photosynthetic bacteria on food garbage treatment was examined. They were added into a treatment reactor specially designed in this study together with food garbage and incubated in various conditions for 15 days and the removals of food garbage and foul smell produced during the treatment were analyzed. Average decomposition percentages of the inoculated food garbage in treatment reactor were 11 and 18.8% under intermittent aeration (once in a day) and continuous aeration conditions (2 L/min), respectively, and these were higher than removal percentages in the corresponding uninoculated reactors,3.4 and 13.8%. Optimal pH and temperature for food garbage decomposition by inoculated bacteria were pH 7.0 and $30^{\circ}C$. Maximal decomposition percentage in the inoculated food garbage was 35% under the optimal condition (pH 7, $30^{\circ}C$, and continuous aeration). The malodor compounds generated from food garbage treatment such as complex foul smell and sulfur compounds were effectively reduced about 84% and 25.5%, respectively, with a biofilter composed of purple nonsulfur bacteria trapped in sponge. This decomposing capability of food garbage by these bacteria can be utilized for the rapid and efficient treatment of food garbage.