• 제목/요약/키워드: Intermetallic Powder

검색결과 124건 처리시간 0.038초

MA법에 의한 V-Co계 비정질합금의 제조 및 구조분석 (Fabrication and structural observation of amorphous V-Co alloy by mechanical alloying)

  • 이충효
    • 한국결정성장학회지
    • /
    • 제22권1호
    • /
    • pp.51-56
    • /
    • 2012
  • 본 연구에서는 출발원료로 ${\sigma}$-VCo 금속간화합물과 $V_{50}Co_{50}$ 혼합분말을 각각 사용하여 기계적 합금화에 따른 비정질화 가능성을 조사하였다. X선 회절에 의해 얻어진 전구조인자 S(Q) 및 동경분포함수 RDF(r)의 결과로부터 볼밀링이 진행됨에 따라 비정질상의 구조적 특징이 분명히 관찰되었다. 120시간 MA 처리에 의하여 두 경우 모두에서 비정질상이 생성됨을 알 수 있었다. 60시간 동안 MA 처리한 $V_{50}Co_{50}$ 분말시료의 열분석 에서는 약 $600^{\circ}C$에 비정질상의 결정화에 의한 발열 peak가 관찰되었다. X선 회절법에 의해 얻어진 전구조인자 및 동경분포함수의 분석으로부터 MA 시간에 따라 출발 결정상은 비정질상의 특징적인 원자구조로 서서히 변화함을 알 수 있었다.

방전 플라즈마 소결(Spark Plasma Sintering) 방법에 의해 제조된 Nb-Si-B계 합금의 미세조직 특성 (Microstructure Characterization of Nb-Si-B alloys Prepared by Spark Plasma Sintering Process)

  • 김상환;김남우;정영근;오승탁;김영도;이성;석명진
    • 한국분말재료학회지
    • /
    • 제22권6호
    • /
    • pp.426-431
    • /
    • 2015
  • Microstructural examination of the Nb-Si-B alloys at Nb-rich compositions is performed. The Nb-rich corner of the Nb-Si-B system is favorable in that the constituent phases are Nb (ductile and tough phase with high melting temperature) and $T_2$ phase (very hard intermetallic compound with favorable oxidation resistance) which are good combination for high temperature structural materials. The samples containing compositions near Nb-rich corner of the Nb-Si-B ternary system are prepared by spark plasma sintering (SPS) process using $T_2$ and Nb powders. $T_2$ bulk phase is made in arc furnace by melting the Nb slug and the Si-B powder compact. The $T_2$ bulk phase was subsequently ball-milled to powders. SPS is performed at $1300^{\circ}C$ and $1400^{\circ}C$, depending on the composition, under 30 MPa for 600s, to produce disc-shaped specimen with 15 mm in diameter and 3 mm high. Hardness tests (Rockwell A-scale and micro Vickers) are carried out to estimate the mechanical property.

Recycling Process of WC Fine Powder Contained by Cemented Carbides Parts in JAPAN

  • Mitsuru Nakamura;Kim, Ha-Young;Hwang, Sun-Hyo
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1999년도 특별강연 및 추계학술발표대회 개요집
    • /
    • pp.297-298
    • /
    • 1999
  • Cemented carbides material (WC-Co hard alloy) were recognized very important and expensive tool or die assembly parts because of compose for the main elements of rare metal (W and Co etc). This research was developed to separate and recover of WC fine powder contained by WC-Co materials. Recycling process was a new method named by the Tin impregnation for decobaltification on cemented carbides. This reaction occurred to product a brittle Co-Sn intermetallic compounds, thereafter it carried out by acid cleaning solution and physical milling or powdering. New process was able to recover about 60% WC fine powder from 1 to 5 ${\mu}{\textrm}{m}$.

  • PDF

Investigation on the Sintering Behavior of P/M Al-Zn-Mg-Cu Alloy

  • Shahmohammadi, M.;Simchi, A.;Danninger, H.;Arvand, A.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.536-537
    • /
    • 2006
  • In the present work, the sintering behavior of high strength Al-5.6Zn-2.5Mg-1.6Cu (in wt.%) alloy compacts prepared from elemental powders was investigated. Microstructural evaluation was accompanied by XRD and DSC methods in order to determine the temperature and chemical composition of the liquid phases formed during sintering. It was found that three transient liquid phases are formed at 420, 439 and 450 $^{\circ}C$. Microstructural study revealed the progressive formation of sintered contacts due to the presence of the liquid phases, although the green compact expands as a result of the melt penetration along the grain boundaries. While Zn melts at ${\sim}420\;^{\circ}C$, the intermetallic phases formed between Al and Mg were found to be responsible for the formation of liquid phase and the dimensional change at higher temperatures.

  • PDF

산화처리된 구형 Fe 분말 성형제의 방전플라즈마 소결거동에 관한 연구 (Densification Behavior of the Oxidation-treated Spherical Fe-powder Compact during Spark-Plasma Sintering Process)

  • 권영순;김윤호;김지순;석명진;문진수;김환태
    • 한국분말재료학회지
    • /
    • 제8권1호
    • /
    • pp.61-69
    • /
    • 2001
  • Spark-Plasma Sintering(SPS) is one of the new sintering methods which takes advantages both inconventional pressure sintering and electric current sintering. It is known that SPS is very effective for the densification of hard-to-sinter materials like refractory metals, intermetallic compounds, glass and ceramics without grain growth. However, a clear explanation for sintering mechanism and an experimental evidence for the formation of weak plasma during SPS are not given yet. In this study, fundamental study on sintering behavior and mechanism of SPS was investiged. For this study, various spherical Fe powders were prepared such as as-received, as-reduced, and as-oxidized and then sintered by SPS facility. In order to confirm the surface cleaning effect during SPS neck region and fracture surface of sintered body was observed and analyzed by SEM/EPMA. Densification behavior was analyzed from the data of deflection along the pressure axis. Some specimens were additionally produced by Hot Pressing and the results were compared with those of SPS.

  • PDF

어닐링처리한 Ni-50at%Al 압분체의 연소합성 거동 (Reaction Synthesis of Annealed Ni-50at%Al Powder Compact)

  • 조용재;이한영
    • 대한금속재료학회지
    • /
    • 제49권10호
    • /
    • pp.790-796
    • /
    • 2011
  • To reduce the heat released during intermetallic reaction, Ni-50at%Al powder compact has been previously annealed at several conditions before the reaction. The effects of the pre-annealing conditions on the reaction synthesis process have been investigated. Experimental results show that the heat released during the reaction synthesis decreased proportionally with increase of the pre-annealing temperature and duration time. The reaction duration period was significantly increased when the intermetallics were formed in the powder compact during the pre-annealing. This was attributed to the fact that the reaction occurred by solid-state diffusion between the un-reacted elemental atoms and that the $NiAl_3$ phase formed predominantly during pre-annealing.

반응소결법 및 통전가압소결법에 의한 $Ti_5Si_3$계 금속간화합물의 합성 및 치밀화 (Synthesis and Densification of $Ti_5Si_3$-base Intermetallic Compounds by Reactive Sintering and Electro-Pressure Sintering)

  • 유호준
    • 한국분말재료학회지
    • /
    • 제4권4호
    • /
    • pp.283-290
    • /
    • 1997
  • $Ti_5Si_3$ intermetallics containing 0-6 wt% of Cu were made by reactive sintering (RS) under vacuum using elemental powder mixtures (Process 1), electro-pressure sintering (EPS) using RS'ed materials (Process2), and EPS using elemental powder mixtures (Process 3). Relatively low dense titanium silicides were gained by process 1, in which porosity decreased with increasing Cu content. For example, porosity changed from 42 to 19.4% with the increase in Cu content from 0 to 6 wt%, indicating that Cu is a useful sintering aid. The titanium silicides fabricated by Process 2 had a higher density than those by Process 1 at given composition, and porosity decreased with increasing Cu content. For example, porosity decreased from 38 to 6.8% with the change in Cu content from 0 to 6 wt%. A high dense titanium silicides were obtained by Process 3. In this Process, porosity decreased a little by Cu addition, and was almost insensitive to Cu content. Namely, about 9 or 7% of porosity was shown in 0 or 1-6 wt% Cu containing silicides, respectively. The hardeness increased by Cu addition, and was not changed markedly with Cu content for the silicides fabricated by Process 3. This tendency was considered to be resulted from porosity, hardening of grain interior by Cu addition, and softening of grain boundary by Cu-base segregates. All these results suggested that EPS using elemental powder mixtures (Process 3) is an effective processing method to achieve satisfactorily dense titanium silicides.

  • PDF

기계.화학적 방법으로 제조된 고활성 나노-니켈 촉매의 특성 I. MA된 Ni-50wt% Al 합금의 미세구조 및 나노 촉매 제조 (The Characterization of Nano-Nickel Catalyst with High Activity by Mechanochemical (MC) Method I. Microstructure of MA Ni-50wt% Al and Preparation of Nano-Ni)

  • 이창래;최재웅;강성군
    • 한국재료학회지
    • /
    • 제9권6호
    • /
    • pp.615-621
    • /
    • 1999
  • The new process in order to fabricate of Ni catalyst with high activity by the mechanochemical(MC) method which was combined the mechanical alloying(MA) and the chemical treatment process. The microstructure and characterization of mechanically alloyed Ni-5-wt% Al powder and Ni catalyst gained by alkali leaching were investigated byt he various analysis such as XRD, SEM-EDS, HRTEM and laser particle analyzer. The steady state powder with 1~2$\mu\textrm{m}$ mean particle size was obtained after 30hr milling with the PCA of 2 wt% stearic acid under the condition of grinding stainless steel ball to powder ratio of 60:1 and rotating speed fo 300rpm. According to result of HRTEM diffraction pattern, MA powder of the steady state was nanocrystalline $Al_3$$Ni_2$ intermetallic compound. Ni catalyst was obtained after KOH leaching of the steady state powder was about 20nm nanocrystalline which contained about 8 wt % Al.

  • PDF

환원.확산법에 의한 $Sm_{2}Fe_{17}N_{x}$ 계 희토류 영구자석의 제조에 관한 기초연구(제 1보) -$Sm_{2}Fe_{17}$금속간화합물 합금분말의 제조- (A Basic Study on the Production of $Sm_{2}Fe_{17}N_{x}$ System Rare Earth Permanent Magnet by the Reduction and Diffusion(I) - Production of Alloy Powder of $Sm_{2}Fe_{17}$ Intermetallic Compound -)

  • 송창빈;조통래
    • 한국재료학회지
    • /
    • 제8권8호
    • /
    • pp.720-725
    • /
    • 1998
  • 환원.확산법에 의해 $Sm_{2}Fe_{17}N_{x}$ 계 희토류 영구자석을 제조하기 위한 기초연구로서, 우선 $Sm_{2}Fe_{17}$ 금속간화합물의 제조를 위하여, 금속 Ca에 의한 $Sm_2O_3$의 환원반응과 Fe분말중에 Sm의 확산반응을 검토하였다. 그 결과 전자는 $1000^{\circ}C$이상의 고온의 경우에 매우 빠르게 완료되지만, 후자의 Fe분말의 중심까지 Sm의 확산반응의 완료(완전한 균질화조건)는 $1100^{\circ}C$에서 3h 정도의 R-D 반응이 필요하며, 이 확산반응이 전체반응에 있어서 율속단계임을 알았다. Sm-Fe 계의 금속간화합물들의 성장은$ 1000^{\circ}C$이하에서는 $SmFe_2$, $SmFe_3$,$Sm_{2}Fe_{17}$금속간화합물의 3개의 상이 관찰되었으나, $1100^{\circ}C$에서는 $Sm_{2}Fe_{17}$ 금속간화합물의 상만이 관찰되었다. 본 연구에서 얻어진 최종시료의 산소 및 Ca량은 각각 0.72wt% 및 0.11wt%이었다.

  • PDF

Sintering Mixtures in the Stage of Establishing Chemical Equilibrium

  • Savitskii, A.P.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1999년도 춘계학술대회 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.5-5
    • /
    • 1999
  • The Principal deficiency of the existing notion about the sintering-mixtures consists in the fact that almost no attention is focused on the Phenomenon of alloy formation during sintering, its connection with dimensional changes of powder bodies, and no correct ideas on the driving force for the sintering process in the stage of establishing chemical equilibrium in a system are available as well. Another disadvantage of the classical sintering theory is an erroneous conception on the dissolution mechanism of solid in liquid. The two-particle model widely used in the literature to describe the sintering phenomenon in solid state disregards the nature of the neighbouring surrounding particles, the presence of pores between them, and the rise of so called arch effect. In this presentation, new basic scientific principles of the driving forces for the sintering process of a two-component powder body, of a diffusion mechanism of the interaction between solid and liquid phases, of stresses and deformation arising in the diffusion zone have been developed. The major driving force for sintering the mixture from components capable of forming solid solutions and intermetallic compounds is attributed to the alloy formation rather than the reduction of the free surface area until the chemical equilibrium is achieved in a system. The lecture considers a multiparticle model of the mixed powder-body and the nature of its volume changes during solid-state and liquid-phase sintering. It explains the discovered S-and V-type concentration dependencies of the change in the compact volume during solid-state sintering. It is supposed in the literature that the dissolution of solid in liquid is realised due to the removal of atoms from the surface of the solid phase into the melt and then their diffusicn transfer from the solid-liquid interface into the bulk of liquid. It has been shown in our experimental studies that the mechanism of the interaction between two components, one of them being liquid, consist in diffusion of the solvent atoms from the liquid into the solid phase until the concentration of solid solutions or an intermetallic compound in the surface layer enables them to pass into the liquid by means of melting. The lecture discusses peculimities of liquid phase formation in systems with intermediate compounds and the role of the liquid phase in bringing about the exothermic effect. At the frist stage of liquid phase sintering the diffusion of atoms from the melt into the solid causes the powder body to grow. At the second stage the diminution of particles in size as a result of their dissolution in the liquid draws their centres closer to each other and makes the compact to shrink Analytical equations were derived to describe quantitatively the porosity and volume changes of compacts as a result of alloy formation during liquid phase sinteIing. Selection criteria for an additive, its concentration and the temperature regime of sintering to control the density the structure of sintered alloys are given.

  • PDF