• Title/Summary/Keyword: Intermediate flow

Search Result 338, Processing Time 0.02 seconds

A Fair Scalable Inter-Domain TCP Marker for Multiple Domain DiffServ Networks

  • Hur, Kyeong;Eom, Doo-Seop
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.338-350
    • /
    • 2008
  • The differentiated services (DiffServ) is proposed to provide packet level service differentiations in a scalable manner. To provide an end-to-end service differentiation to users having a connection over multiple domains, as well as a flow marker, an intermediate marker is necessary at the edge routers, and it should not be operated at a flow level due to a scalability problem. Due to this operation requirement, the intermediate marker has a fairness problem among the transmission control protocol (TCP) flows since TCP flows have intrinsically unfair throughputs due to the TCP's congestion control algorithm. Moreover, it is very difficult to resolve this problem without individual flow state information such as round trip time (RTT) and sending rate of each flow. In this paper, to resolve this TCP fairness problem of an intermediate marker, we propose a fair scalable marker (FSM) as an intermediate marker which works with a source flow three color marker (sf-TCM) operating as a host source marker. The proposed fair scalable marker improves the fairness among the TCP flows with different RTTs without per-flow management. Through the simulations, we show that the FSM can improve TCP fairness as well as link utilization in multiple domain DiffServ networks.

Critical Fluid Velocity of Fluid-conveying Cantilevered Cylindrical Shells with Intermediate Support (중간 지지된 유체 유동 외팔형 원통셸의 임계유속)

  • Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.422-429
    • /
    • 2011
  • The critical fluid velocity of cantilevered cylindrical shells subjected to internal fluid flow is investigated in this study. The fluid-structure interaction is considered in the analysis. The cantilevered cylindrical shell is supported intermediately at an arbitrary axial position. The intermediate support is simulated by two types of artificial springs: translational and rotational spring. It is assumed that the artificial springs are placed continuously and uniformly on the middle surface of an intermediate support along the circumferential direction. The steady flow of fluid is described by the classical potential flow theory. The motion of shell is represented by the first order shear deformation theory (FSDT) to account for rotary inertia and transverse shear strains. The effect of internal fluid can be considered by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. Numerical examples are presented and compared with existing results.

Dynamic Constitutive Equations of Auto-body Steel Sheets with the Variation of Temperature (II) - Flow Stress Constitutive Equation - (차체용 강판의 온도에 따른 동적 구성방정식에 관한 연구 (II) - 온도에 따른 동적 구성방정식 -)

  • Lee, Hee-Jong;Song, Jung-Han;Park, Sung-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.182-189
    • /
    • 2007
  • This paper is concerned with the empirical flow stress constitutive equation of steel sheets for an auto-body with the variation of temperature and strain rate. In order to represent the strain rate and temperature dependent behavior of the flow stress at the intermediate strain rates accurately, an empirical hardening equation is suggested by modifying the well-known Khan-Huang-Liang model. The temperature and strain rate dependent sensitivity of the flow stress at the intermediate strain rate is considered in the hardening equation by coupling the strain, the strain rate and the temperature. The hardening equation suggested gives good correlation with experimental results at various intermediate strain rates and temperatures. In order to verify the effectiveness and accuracy of the suggested model quantitatively, the standard deviation of the fitted result from the experimental one is compared with those of the other two well-known empirical constitutive models such as the Johnson-Cook and the Khan-Huang-Liang models. The comparison demonstrates that the suggested model gives relatively well description of experimental results at various strain rates and temperatures.

Chaotic Thermal Convection of a Intermediate Prandtl-Number Fluid in a Horizontal Annulus: Pr=0.2 (수평 환형 공간에서의 중간 Prandtl 수 유체의 혼돈 열대류: Pr=0.2)

  • Yu, Ju-Sik;Kim, Yong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.433-441
    • /
    • 2001
  • Natural convection of a fluid with intermediate Prand시 number of Pr=0.2 in a horizontal annulus is considered, and the bifurcation phenomena and chaotic flows are numerically investigated. The unsteady two-dimensional streamfunction-vorticity equation is solved with finite difference method. The steady downward flow with two counter-rotating eddies bifurcates to a simple periodic flow with a fundamental frequency. And afterwards, second Hopf bifurcation occurs, and a quasi-periodic flow with two incommensurable frequencies appears. However, a new time-periodic flow is established after experiencing quasi-periodic states. As Rayleigh number is increased further, the chaotic flow regime is reached after a sequence of successive Hopf bifurcation to quasi-periodic and chaotic flow regimes. A scenario similar to the Ruelle-Takens-Newhouse scenario of the onset of chaos is observed.

Implementation and Analysis of Optimizers on Tuple codes (튜플 코드 상에서의 최적화기 구현과 분석)

  • 송진국
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.4
    • /
    • pp.723-736
    • /
    • 1999
  • Code optimization phase in a compiler are very important because the phase reduces the running time and the storage size of machine codes. I developed flow analyzers and optimizers on intermediate codes. The flow analyzers generate control-flow and data-flow information. The optimizers transform the intermediate codes into the improved codes using this information. This paper describes the development of flow analyzers and optimizers. I also examined the execution performance, the cost and the dependency of each optimization.

  • PDF

Folding Mechanism of WT* Ubiquitin Variant Studied by Stopped-flow Fluorescence Spectroscopy

  • Park, Soon-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2877-2883
    • /
    • 2010
  • The folding kinetics of $WT^*$ ubiquitin variant with valine to alanine mutation at sequence position 26 (HubWA) was studied by stopped-flow fluorescence spectroscopy. While unfolding kinetics showed a single exponential phase, refolding reaction showed three exponential phases. The semi-logarithmic plot of urea concentration vs. rate constant for the first phase showed v-shape pattern while the second phase showed v-shape with roll-over effect at low urea concentration. The rate constant and the amplitude of the third phase were constant throughout the urea concentrations, suggesting that this phase represents parallel process due to the configurational isomerization. Interestingly, the first and second phases appeared to be coupled since the amplitude of the second phase increased at the expense of the amplitude of the first phase in increasing urea concentrations. This observation together with the roll-over effect in the second folding phase indicates the presence of intermediate state during the folding reaction of HubWA. Quantitative analysis of Hub-WA folding kinetics indicated that this intermediate state is on the folding pathway. Folding kinetics measurement of a mutant HubWA with hydrophobic core residue mutation, Val to Ala at residue position 17, suggested that the intermediate state has significant amount of native interactions, supporting the interpretation that the intermediate is on the folding pathway. It is considered that HubWA is a useful model protein to study the contribution of residues to protein folding process using folding kinetics measurements in conjunction with protein engineering.

CROSS FLOW EFFECTS ON THE FLAME HEIGHT OF AN INTERMEDIATE SCALE DIFFUSION FLAME

  • Kolb, Gilles;Torero, Jose L.;Most, Jean-Michel;Joulain, Pierre
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.169-177
    • /
    • 1997
  • An experimental study has been conducted at an intermediate scale to study the effect of a cross flow on a purely buoyant fire. Video taping of the flame and post processing of the images by means of a novel technique provide a contour of a mean flame for all cases studied. This flame contour allows the determination of a mean flame length and a mean flame height. The mean flame length and height are recorded as functions of the forced flow velocity. Three dimensional flow patterns are formed in the flame trailing edge affecting both the mean flame length and height. The three dimensional patterns are studied systematically as functions of the cross flow velocity to quantify the effect of confinement on the flame geometry.

  • PDF

Control of Advanced Reactor-coupled Heat Exchanger System: Incorporation of Reactor Dynamics in System Response to Load Disturbances

  • Skavdahl, Isaac;Utgikar, Vivek;Christensen, Richard;Chen, Minghui;Sun, Xiaodong;Sabharwall, Piyush
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1349-1359
    • /
    • 2016
  • Alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX) are presented in this paper. One scheme is designed to control the cold outlet temperature of the SHX ($T_{co}$) and the hot outlet temperature of the intermediate heat exchanger ($T_{ho2}$) by manipulating the hot-side flow rates of the heat exchangers ($F_h/F_{h2}$) responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the control of the cold outlet temperature of the SHX ($T_{co}$) only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1) flow rate manipulation; (2) reactor power manipulation; or (3) a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The third option appears preferable as it has an intermediate response time and requires only a minimal flow rate change.

Water Masses and Flow Fields of the Southern Ocean Measured by Autonomous Profiling Floats (Argo floats)

  • Park, Young-Gyu;Oh, Kyung-Hee;Suk, Moon-Sik
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.183-188
    • /
    • 2005
  • Using data from Argo floats collected in the Southern Ocean, we describe water mass prop erties and flow fields at intermediate levels (1000m and 2000m levels). Water mass properties from Argo floats, which are consistent with those from previous hydrographic surveys, reflect the movement of the floats well even without quality control on the Argo data. Since the flow fields from the Argo floats do not cover the entire Southern Ocean, we could not obtain a general circulation pattern, especially at the 2000m level. We, however, can confirm the general eastward tendency due to ACC largely following the topography.

Sensitivity Analysis on the Non-tree Solution of the Minimum Cost Flow Problem (최소비용문제의 비정점 최적해에 대한 감도분석)

  • 정호연;박순달
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • The purpose of this paper is to develop a method of the sensitivity analysis that can be applied to a non-tree solution of the minimum cost flow problem. First, we introduce two types of sensitivity analysis. A sensitivity analysis of Type 1a is the well known method applicable to a tree solution. However this method can not be applied to a non-tree solution. So we propose a sensitivity analysis of Type 2 that keeps solutions of upper bounds at upper bounds, those of lower bounds at lower bounds, and those of intermediate values at intermediate values. For the cost coefficient we present a method that the sensitivity analysis of Type 2 is solved by finding the shortest path. Besides we also show that the results of Type 2 and Type 1 are the same in a spanning tree solution. For the right-hand side constant or the capacity, the sensitivity analysis of Type 2 is solved by a simple calculation using arcs with intermediate values.

  • PDF