• Title/Summary/Keyword: Intermediate Die

Search Result 50, Processing Time 0.018 seconds

Development of Program for the Intermediate ie Design in the Drawing of the Rectangular Rod (직사각재 인발 공정의 중간 금형 설계 프로그램 개발)

  • 김동진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.95-98
    • /
    • 1999
  • In this study, a method to find the optimal intermediate die geometry for the multi-stage drawing process for the rectangular rod from a round bar is proposed and a program using the proposed method is developed. On the stage of the design of the intermediate die geometry, the virtual die was constructed using the initial billet as a inlet of the drawing die and the final product as a exit of that and the virtual die was divided by the number of pass. Divided die was transformed into the rectangular one which is the intermediate die geometry for the multi-stage rectangular drawing process. In order to verify the application of the proposed method on the real industrial product, the drawing of the rectangular rod from a round which composed two stage has been performed and simulated by the three dimensional rigid plastic finite element method.

  • PDF

Optimization of Process Variables of Shape Drawing for Steering Spline Shaft (조향장치용 스플라인 샤프트 이형인발 공정변수 최적화)

  • Lee, S.K.;Kim, S.M.;Lee, S.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.2
    • /
    • pp.132-137
    • /
    • 2010
  • In the multi-pass shape drawing process, the appropriate process design is very important to produce sound products. The reduction ratio, die angle, and the intermediate die shape are very important process variable of the multi-pass shape drawing. The aim of this study is the determination of the reduction ratio, die angle, and the intermediate die shape of the 2 pass shape drawing process for producing steering spline shaft. In this study, FE analysis, Taguchi method, and ANN(artificial neural network) were applied to determine the appropriate reduction ratio, die angle, and intermediate die shape. After the determination of the process variables, FE analysis and drawing experiment were performed to evaluate the effectiveness of the determined process variables. The dimensional accuracy of the final drawn spline shaft was evaluated by using 3D surface profiler and 3D laser digitizing system.

Forging Process Analysis of the Multi-forging Die for the Unified Universal Pipe Joint of the Intermediate Shaft (인텀샤프트 일체형 유니버셜 파이프 조인트용 다단조금형의 단조공정해석)

  • Kwon, Hyuk-Hong;Moon, Kwan-Jin;Song, Seung-Eun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.33-41
    • /
    • 2010
  • This study was aimed at the design of the dies for the unified pipe joint of the intermediate shaft using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation, 'Deform-3d' and 'eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the process analysis, we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of die design, we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for multi-forging has been developed.

Design of Intermediate Die for Spline Drawing (스플라인형상 인발을 위한 중간패스 단면형상 설계)

  • Lee, T.K.;Lee, J.E.;Lee, S.K.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.337-340
    • /
    • 2008
  • The cross section shape of intermediate die is one of important parameters to obtain dimensional accuracy of final product in shaped drawing process. Until now it has been designed by the experience or trial and error of the expert. In this study, the cross section shape of intermediate die fur spline shape is determined by the electronic field analysis, shape factor method. The result of the electronic field analysis, shape factor method has been compared with that of the present method. The effects of cross section shape on the dimensional accuracy were investigated by using FE analysis. And then the multi-stage shaped drawing experiments were performed to verify the results of FE analysis. As a result, the cross section shape from the electronic field analysis had the good dimensional accuracy. The electronic field analysis can be used for the method to obtain the cross section shape of intermediate die in shaped drawing process.

  • PDF

Design of the Cross Sectional Shape of Intermediate Die for Shaped Drawing of Spline (스플라인 이형인발을 위한 중간 다이 단면형상 설계)

  • Lee, J.E.;Lee, T.K.;Lee, S.K.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.627-632
    • /
    • 2008
  • The cross sectional shape of intermediate die is one of important parameters to improve dimensional accuracy of final product in shaped drawing process. Until now, it has been designed by the experience or trial and error of the expert. In this study, the cross sectional shape of intermediate die for spline shape is determined by the electric fields analysis and scale factor method. The result of the electric fields analysis and scale factor method have been compared with that of the expert method. The effects of cross sectional shape on the dimensional accuracy were investigated by using FE-simulation. And then the multi-stage shaped drawing experiments were performed to verify the results of FE-simulation. As a result, the cross sectional shape from the electric fields analysis and scale factor method had the good dimensional accuracy. These two methods can be used for the method to obtain the cross sectional shape of intermediate die in shaped drawing process.

Die Design for Shape Drawing to Improve the Dimensional Accuracy of a Hollow LM-Guide Rail (중공형 LM-Guide Rail의 치수정밀도 향상을 위한 형상인발 금형 설계)

  • Park, J.H.;Lee, K.H.;Kim, S.M.;Kim, H.J.;Kim, S.J.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.340-347
    • /
    • 2015
  • Multi-pass shape drawing is used to manufacture long products of arbitrary cross-sectional shapes. This process allows smooth surface finishes and closely controlled dimensions of the cross-sectional shape. Tube shape drawing for hollow type products provides material savings and weight reduction. The intermediate die shapes are very important in multi-pass tube shape drawing. In the current paper, the design method for the intermediate dies in a tube shape drawing process is developed using a die offset for corner filling (DOCF) method. Underfill defects are related to the radial velocity distribution of each divided section in the deformation zone. The developed intermediate die shape design was applied to the two-pass tube shape drawing with fixed mandrel for manufacturing a hollow linear motion (LM) guide rail. The proposed design method led to uniform and steady metal flow at each divided section. FE-simulations and experiments were conducted to validate the effectiveness of the proposed method in multi-pass tube shape drawing process.

Development of Intermediate Die Shape Design Program for Multi-Pass Shape Drawing by Using VisualLISP (VisualLISP을 이용한 다단이형인발 중간패스 단면형상설계 프로그램 개발)

  • Lee, S.K.;Lee, S.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.242-247
    • /
    • 2010
  • In the multi-pass shape drawing process, it is important to design the intermediate dies for producing sound products. Up to now, the design of the intermediate dies is mainly carried out by the industrial experts based on their experience. In this study, a design program was developed to design the intermediate dies for multi-pass shape drawing process. The program was programmed by using VisualLISP. In this program the intermediate dies can be designed by using the initial material shape and the final product shape. In order to verify the effectiveness, the program was applied to design the intermediate dies of multi-pass shape drawing for producing four teeth spline and gun slide. Finally, FE analysis and shape drawing experiment were performed to verify the effectiveness of the designed intermediate dies. As a result, it was possible to produce the drawn products with the required dimensional accuracy.

Progressive Forming Process Design of an Automotive Bracket Part with Computer Simulation (전산해석을 이용한 자동차 브라켓 부품의 프로그래시브 성형 공정 설계)

  • Kim, K.P.;Lee, D.G.;Jang, K.C.;Kim, G.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.126-129
    • /
    • 2008
  • This paper concerns the progressive die design for an automotive bracket part aided by the computer simulation in order to eliminate the inferiority such as the crack. The computer simulation of the progressive forming process is utilized in order to investigate cause of the cracks. This paper proposes a new guideline for the die design which modifies intermediate shapes and adds intermediate forming stages in progressive forming process. The effectiveness of the proposed design is verified by the computer simulation. The simulation result shows that the modified die design for the progressive forming process can eliminate the crack and improve quality of the automotive bracket part.

  • PDF

High-accuracy and High-speed Groove Die Set (고정도.고속 Groove Die Set)

  • Kim, Gun-Hoi
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.7-15
    • /
    • 2008
  • Currently existing high-accuracy and high-speed die sets used in reciprocal press create scratches at the surface of guide posts, steel balls, and bushes due to vertical movement of balls with point-contacts between inner surface of bushes and guide posts. Consequently, accuracy of the die set and the life span of the metal mold are reduced. However, those scratches could reduce the pre-load of the steel ball. This research designed and developed a groove-type die set which improves life span of the die set by eliminating point-contacts of steel balls with guide posts. The guide post consisted of a steel-ball retainer, a steel-ball retainer stopper, a guide bush, a guide pin, a snap ring, and a spring. The steel-ball retainer has 72 holes with 8 columns of 9 holes in each column. The inner surface of the guide bush was grinded(surface roughness: $Ra\;\\;0.2{\mu}m$, accuracy: $0\;{\sim}\;-0.002mm$) after NC turning and heat treatment. Also, a line of small intermediate pocket was processed inside of the guide bush for lubrication and elimination of foreign materials. Guide grooves of steel balls were processed using a wire EDM(Electrical Discharge Machining) after heat treatment. With such a design of the guide post stated above, loads against steel balls could be dispersed greatly by the line contacts through the guide groove between the guide post and the guide bush, and the life span of the guide post could be expanded semi-permanently.