• Title/Summary/Keyword: Interleukin-1 receptor antagonist

Search Result 35, Processing Time 0.027 seconds

The role of cytokines in seizures: interleukin (IL)-$1{\beta}$, IL-1Ra, IL-8, and IL-10

  • Youn, Youngah;Sung, In Kyung;Lee, In Goo
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.7
    • /
    • pp.271-274
    • /
    • 2013
  • Brain insults, including neurotrauma, infection, and perinatal injuries such as hypoxic ischemic encephalopathy, generate inflammation in the brain. These inflammatory cascades induce a wide spectrum of cytokines, which can cause neuron degeneration, have neurotoxic effects on brain tissue, and lead to the development of seizures, even if they are subclinical and occur at birth. Cytokines are secreted by the glial cells of the central nervous system and they function as immune system mediators. Cytokines can be proinflammatory or anti-inflammatory. Interleukin (IL)-$1{\beta}$ and IL-8 are proinflammatory cytokines that activate additional cytokine cascades and increase seizure susceptibility and organ damage, whereas IL-1 receptor antagonist and IL-10 act as anti-inflammatory cytokines that have protective and anticonvulsant effects. Therefore, the immune system and its associated inflammatory reactions appear to play an important role in brain damage. Whether cytokine release is relevant for the processes of epileptogenesis and antiepileptogenesis, and whether epileptogenesis could be prevented by immunomodulatory treatment should be addressed in future clinical studies. Furthermore, early detection of brain damage and early intervention are essential for the prevention of disease progression and further neurological complications. Therefore, cytokines might be useful as biomarkers for earlier detection of brain damage in high-risk infants.

Effect of the Inhibition of Platelet Activating Factor on Oxidative Lung Injury Induced by Interleukin-$1\;{\alpha}$

  • Lee, Young-Man;Park, Yoon-Yub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.479-491
    • /
    • 1998
  • In order to know the pathogenesis of adult respiratory distress syndrome (ARDS) in association with the oxidative stress by neutrophils, the role of platelet activating factor (1-0-alkyl-2-acetyl-snglycero-3-phosphocholine, PAF) was investigated during acute lung injury induced by interleukin- $1{\alpha}$ (IL-1) in rats. An insufflation of IL-1 into the rat's trachea increased the acetyltransferase activity in the lung and the increase of PAF content was followed. As evidences of acute lung injury by neutrophilic respiratory burst, lung leak index, myeloperoxidase activity, numbers of neutrophils in the bronchoalveolar lavage fluid, neutrophilic adhesions to endothelial cells and NBT positive neutrophils were increased after IL-1 treatment. In addition, a direct instillation of PAF into the trachea caused acute lung leak and the experimental results showed a similar pattern in comparison with IL-1 induced acute lung injury. For the confirmation of oxidative stress during acute lung leak by IL-1 and PAF, a histochemical electron microscopy was performed. In IL-1 and PAF treated lungs of rats, the deposits of cerrous perhydroxide were found. To elucidate the role of PAF, an intravenous injection of PAF receptor antagonist, WEB 2086 was given immediately after IL-1 or PAF treatment. WEB 2086 decreased the production of hydrogen peroxide and the acute lung leak. In ultrastructural study, WEB 2086 mitigated the pathological changes induced by IL-1 or PAF. The nuclear factor kappa B (NFkB) was activated by PAF and this activation was inhibited by WEB 2086 almost completely. Based on these experimental results, it is suggested that the PAF produced in response to IL-1 through the remodeling pathway has the major role for acute lung injury by neutrophilic respiratory burst. In an additional experiment, we can also come to conclude that the activation of the NFkB by PAF is thought to be the fundamental mechanism to initiate the oxidative stress by neutrophils causing release of proinflammatory cytokines and activation of phospholipase $A_2$.

  • PDF

Association of a genetic polymorphism of IL1RN with risk of acute pancreatitis in a Korean ethnic group

  • Park, Jin Woo;Choi, Ja Sung;Han, Ki Joon;Lee, Sang Heun;Kim, Eui Joo;Cho, Jae Hee
    • The Korean journal of internal medicine
    • /
    • v.33 no.6
    • /
    • pp.1103-1110
    • /
    • 2018
  • Background/Aims: Several epidemiological studies have validated the association of interleukin gene polymorphisms with acute pancreatitis (AP) in different populations. However, there have been few studies in Asian ethnic groups. We aimed to investigate the relationships between inflammatory cytokine polymorphisms and AP as pilot research in a Korean ethnic group. Methods: Patients who had been diagnosed with AP were prospectively enrolled. DNA was extracted from whole blood, and DNA sequencing was subsequently performed. Single-nucleotide polymorphisms (SNPs) of the interleukin $1{\beta}$ (IL1B), interleukin 1 receptor antagonist (IL1RN), and tumor necrosis factor ${\alpha}$ (TNFA) genes of patients with AP were compared to those of normal controls. Results: Between January 2011 and January 2013, a total of 65 subjects were enrolled (40 patients with AP vs. 25 healthy controls). One intronic SNP (IL1RN -1129T>C, rs4251961) was significantly associated with the risk of AP (odds ratio, 0.304; 95% confidence interval, 0.095 to 0.967; p = 0.043). However, in our study, AP was not found to be associated with polymorphisms in the promoter regions of inflammatory cytokine genes, including IL1B (-118C>T, c47+242C>T, +3954C/T, and -598T>C) and TNFA (-1211T>C, -1043C>A, -1037C>T, -488G>A, and -418G>A). Conclusions: IL1RN -1129T>C (rs4251961) genotypes might be associated with a significant increase of AP risk in a Korean ethnic group.

Clinical features, diagnosis, and outcomes of multisystem inflammatory syndrome in children associated with coronavirus disease 2019

  • Kwak, Ji Hee;Lee, Soo-Young;Choi, Jong-Woon;Korean Society of Kawasaki Diseasety of Pediatric Endocrinology (KSPE),
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.2
    • /
    • pp.68-75
    • /
    • 2021
  • The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been spreading worldwide since December 2019. Hundreds of cases of children and adolescents with Kawasaki disease (KD)-like hyperinflammatory illness have been reported in Europe and the United States during the peak of the COVID-19 pandemic with or without shock and cardiac dysfunction. These patients tested positive for the polymerase chain reaction or antibody test for SARS-CoV-2 or had a history of recent exposure to COVID-19. Clinicians managing such patients coined new terms for this new illness, such as COVID-19-associated hyperinflammatory response syndrome, pediatric inflammatory multisystem syndrome temporally associated with COVID-19, or COVID-19-associated multisystem inflammatory syndrome in children (MIS-C). The pathogenesis of MIS-C is unclear; however, it appears similar to that of cytokine storm syndrome. MIS-C shows clinical features similar to KD, but differences between them exist with respect to age, sex, and racial distributions and proportions of patients with shock or cardiac dysfunction. Recommended treatments for MIS-C include intravenous immunoglobulin, corticosteroids, and inotropic or vasopressor support. For refractory patients, monoclonal antibody to interleukin-6 receptor (tocilizumab), interleukin-1 receptor antagonist (anakinra), or monoclonal antibody to tumor necrosis factor (infliximab) may be recommended. Patients with coronary aneurysms require aspirin or anticoagulant therapy. The prognosis of MIS-C seemed favorable without sequelae in most patients despite a reported mortality rate of approximately 1.5%.

Participation of central GABAA receptors in the trigeminal processing of mechanical allodynia in rats

  • Kim, Min Ji;Park, Young Hong;Yang, Kui Ye;Ju, Jin Sook;Bae, Yong Chul;Han, Seong Kyu;Ahn, Dong Kuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.65-74
    • /
    • 2017
  • Here we investigated the central processing mechanisms of mechanical allodynia and found a direct excitatory link with low-threshold input to nociceptive neurons. Experiments were performed on male Sprague-Dawley rats weighing 230-280 g. Subcutaneous injection of interleukin 1 beta ($IL-1{\beta}$) ($1ng/10{\mu}L$) was used to produce mechanical allodynia and thermal hyperalgesia. Intracisternal administration of bicuculline, a gamma aminobutyric acid A ($GABA_A$) receptor antagonist, produced mechanical allodynia in the orofacial area under normal conditions. However, intracisternal administration of bicuculline (50 ng) produced a paradoxical anti-allodynic effect under inflammatory pain conditions. Pretreatment with resiniferatoxin (RTX), which depletes capsaicin receptor protein in primary afferent fibers, did not alter the paradoxical anti-allodynic effects produced by the intracisternal injection of bicuculline. Intracisternal injection of bumetanide, an Na-K-Cl cotransporter (NKCC 1) inhibitor, reversed the $IL-1{\beta}$-induced mechanical allodynia. In the control group, application of GABA ($100{\mu}M$) or muscimol ($3{\mu}M$) led to membrane hyperpolarization in gramicidin perforated current clamp mode. However, in some neurons, application of GABA or muscimol led to membrane depolarization in the $IL-1{\beta}$-treated rats. These results suggest that some large myelinated $A{\beta}$ fibers gain access to the nociceptive system and elicit pain sensation via $GABA_A$ receptors under inflammatory pain conditions.

Impact on Inflammation and Recovery of Skin Barrier by Nordihydroguaiaretic Acid as a Protease-Activated Receptor 2 Antagonist

  • Kim, Hyo-Young;Goo, Jung-Hyun;Joo, Yeon-Ah;Lee, Ha-Yoen;Lee, Se-Mi;Oh, Chang-Taek;Ahn, Soo-Mi;Kim, Nam-Hoon;Hwang, Jae-Sung
    • Biomolecules & Therapeutics
    • /
    • v.20 no.5
    • /
    • pp.463-469
    • /
    • 2012
  • Atopic dermatitis is a chronic, inflammatory disease of the skin with increased transepidermal water loss. Both an abnormal inflammatory response and a defective skin barrier are known to be involved in the pathogenesis of atopic dermatitis. Protease activated receptor 2 (PAR2) belongs to a family of G-protein coupled receptors and is activated by both trypsin and a specific agonist peptide, SLIGKV-$NH_2$. PAR2 is expressed in suprabasal layers of the epidermis and regulates inflammatory responses and barrier homeostasis. In this study, we show that nordihydroguaiaretic acid (NDGA) inhibits the PAR2-mediated signal pathway and plays a role in skin barrier recovery in atopic dermatitis. Specifically, NDGA reduces the mobilization of intracellular $Ca^{2+}$ in HaCaT keratinocytes by down-regulating inflammatory mediators, such as interleukin-8, thymus and activation-regulated chemokine and intercellular cell adhesion molecule-1 in HaCaT keratinocytes. Also, NDGA decreases the protein expression of involucrin, a differentiation maker of keratinocyte, in both HaCaT keratinocytes and normal human epidermal keratinocytes. We examined NDGA-recovered skin barrier in atopic dermatitis by using an oxazolone-induced atopic dermatitis model in hairless mice. Topical application of NDGA produced an increase in transepidermal water loss recovery and a decrease in serum IgE level, without weight loss. Accordingly, we suggest that NDGA acts as a PAR2 antagonist and may be a possible therapeutic agent for atopic dermatitis.

Toll-like receptor 4/nuclear factor-kappa B pathway is involved in radicular pain by encouraging spinal microglia activation and inflammatory response in a rat model of lumbar disc herniation

  • Zhu, Lirong;Huang, Yangliang;Hu, Yuming;Tang, Qian;Zhong, Yi
    • The Korean Journal of Pain
    • /
    • v.34 no.1
    • /
    • pp.47-57
    • /
    • 2021
  • Background: Lumbar disc herniation (LDH) is a common cause of radicular pain, but the mechanism is not clear. In this study, we investigated the engagement of toll-like receptor 4 (TLR4) and the nuclear factor-kappa B (NF-κB) in radicular pain and its possible mechanisms. Methods: An LDH model was induced by autologous nucleus pulposus (NP) implantation, which was obtained from coccygeal vertebra, then relocated in the lumbar 4/5 spinal nerve roots of rats. Mechanical and thermal pain behaviors were assessed by using von Frey filaments and hotplate test respectively. The protein level of TLR4 and phosphorylated-p65 (p-p65) was evaluated by western blotting analysis and immunofluorescence staining. Spinal microglia activation was evaluated by immunofluorescence staining of specific relevant markers. The expression of proand anti-inflammatory cytokines in the spinal dorsal horn was measured by enzyme linked immunosorbent assay. Results: Spinal expression of TLR4 and p-NF-κB (p-p65) was significantly increased after NP implantation, lasting up to 14 days. TLR4 was mainly expressed in spinal microglia, but not astrocytes or neurons. TLR4 antagonist TAK242 decreased spinal expression of p-p65. TAK242 or NF-κB inhibitor pyrrolidinedithiocarbamic acid alleviated mechanical and thermal pain behaviors, inhibited spinal microglia activation, moderated spinal inflammatory response manifested by decreasing interleukin (IL)-1β, IL-6, tumor necrosis factor-α expression and increasing IL-10 expression in the spinal dorsal horn. Conclusions: The study revealed that TLR4/NF-κB pathway participated in radicular pain by encouraging spinal microglia activation and inflammatory response.

Interleukin 1 Receptor Antagonist(IL-1ra) Gene Polymorphism in Children with Henoch-$Sch{\ddot{o}}nlein$ Purpura Nephritis (Henoch-$Sch{\ddot{o}}nlein$ Purpura 신염에서 Interleukin 1 Receptor Antagonist(IL-1ra) 유전자 다형성)

  • Hwang, Phil-Kyung;Lee, Jeong-Nye;Chung, Woo-Yeong
    • Childhood Kidney Diseases
    • /
    • v.9 no.2
    • /
    • pp.175-182
    • /
    • 2005
  • Purpose : Interleukin 1 receptor antagonist(IL-1ra) is an endogenous antiinflammatory agent that binds to IL-1 receptor and thus competitively inhibits the binding of IL-1$\alpha$ and IL-1$\beta$. Allele 2 in association with various autoimmune diseases has been reported. In order to evaluate the influence of IL-1ra gene VNTR polymorphism on the susceptibility to HSP and its possible association with disease severity, manifested by severe renal involvement and renal sequelae, we studied the incidence of carriage rate and allele frequency of the 2 repeats of IL-1ra allele 2($IL1RN^{*}2$) of the IL-1ra gene in children with HSP with and without renal involvement. Methods : The IL-1ra gene polymorphisms were determined in children with HSP with(n=40) or without nephritis(n=34) who had been diagnosed at Busan Paik Hospital and the control groups(n=163). Gene polymorphism was identified by PCR amplification of the genomic DNA. Results : The allelic frequency and carriage rate of $IL1RN^{*}1$ were found most frequently in patients with HSP and in controls. The allelic frequency of $IL1RN^{*}2$ was higher in patients with HSP compared to that of controls($4.7\%\;vs.\;2.5\%$, P=0.794). The carriage rate of $IL1RN^{*}2$ was higher In patients with HSP compared to that of controls($8.1\%\;vs.\;6.8\%$, P=0.916). The allelic frequency of $IL1RN^{*}2$ was higher in patients with HSP nephritis compared to that of HSP($5.3\%\;vs.\;2.9\%$, P=0.356). The carriage rate of $IL1RN^{*}2$ was higher in Patients with HSP nephritis compared to that of HSP($10.0\%\;vs.\;5.9\%$, P=0.523). Among 13 patients with heavy proteinuria(>1.0 g), 11 had $IL1RN^{*}1$, 1 had $IL1RN^{*}2$ and the others had $IL1RN^{*}4$. At the time of last follow up 4 patients had sustained proteinuria and their genotype was $IL1RN^{*}1$. Conclusion : The allelic frequency and carriage rate of $IL1RN^{*}1$ were found most frequently in patients with HSP and in controls. Our study suggests that the carriage rate and allele frequency of the 2-repeats of IL-1lra allele 2($IL1RN^{*}2$) of the IL-1ra gene may not be associated with susceptibility and severity of renal involvement in children with HSP (J Korean Soc Pediatr Nephrol 2005;9:175-182)

  • PDF

Gintonin regulates inflammation in human IL-1β-stimulated fibroblast-like synoviocytes and carrageenan/kaolin-induced arthritis in rats through LPAR2

  • Kim, Mijin;Sur, Bongjun;Villa, Thea;Yun, Jaesuk;Nah, Seung Yeol;Oh, Seikwan
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.575-582
    • /
    • 2021
  • Background: In ginseng, there exists a glycolipoprotein complex with a special form of lipid LPAs called Gintonin. The purpose of this study is to show that Gintonin has a therapeutic effect on rheumatoid arthritis through LPA2 receptors. Methods: Fibroblast-like synoviocytes (FLS) were treated with Gintonin and stimulated with interleukin (IL)-1β. The antioxidant effect of Gintonin was measured using MitoSOX and H2DCFDA experiments. The anti-arthritic efficacy of Gintonin was examined by analyzing the expression levels of inflammatory mediators, phosphorylation of mitogen-activated protein kinase (MAPK) pathways, and translocation of nuclear factor kappa B (NF-κB)/p65 into the nucleus through western blot. Next, after treatment with LPAR2 antagonist, western blot analysis was performed to measure inflammatory mediator expression levels, and NF-κB signaling pathway. Carrageenan/kaolin-induced arthritis rat model was used. Rats were orally administered with Gintonin (25, 50, and 100 mg/kg) every day for 6 days. The knee joint thickness, squeaking score, and weight distribution ratio (WDR) were measured as the behavioral parameters. After sacrifice, H&E staining was performed for histological analysis. Results: Gintonin significantly inhibited the expression of iNOS, TNF-α, IL-6 and COX-2. Gintonin prevented NF-κB/p65 from moving into the nucleus through the JNK and ERK MAPK phosphorylation in FLS cells. However, pretreatment with an LPA2 antagonist significantly reversed these effects of Gintonin. In the arthritis rat model, Gintonin suppressed all parameters that were measured. Conclusion: This study suggests that LPA2 receptor plays a key role in mediating the anti-arthritic effects of Gintonin by modulating inflammatory mediators, the MAPK and NF-κB signaling pathways.

Add-on Therapy for Symptomatic Asthma despite Long-Acting Beta-Agonists/Inhaled Corticosteroid

  • Dreher, Michael;Muller, Tobias
    • Tuberculosis and Respiratory Diseases
    • /
    • v.81 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • Asthma, remains symptomatic despite ongoing treatment with high doses of inhaled corticosteroids (ICS) in conjunction with long-acting beta-agonists (LABA), is classified as "severe" asthma. In the course of caring for those patients diagnosed with severe asthma, stepping up from ICS/LABA to more aggressive therapeutic measures would be justified, though several aspects have to be checked in advance (including inhaler technique, adherence to therapy, and possible associated comorbidities). That accomplished, it would be advisable to step up care in accordance with the Global Initiative for Asthma (GINA) recommendations. Possible strategies include the addition of a leukotriene receptor antagonist or tiotropium (to the treatment regimen). The latter has been shown to be effective in the management of several subgroups of asthma. Oral corticosteroids have commonly been used for the treatment of patients with severe asthma in the past; however, the use of oral corticosteroids is commonly associated with corticosteroid-related adverse events and comorbidities. Therefore, according to GINA 2017 these patients should be referred to experts who specialize in the treatment of severe asthma to check further therapeutic options including biologics before starting treatment with oral corticosteroids.