• Title/Summary/Keyword: Interleukin (IL)-13

Search Result 299, Processing Time 0.027 seconds

Transglutaminase-2 Is Involved in Expression of Osteoprotegerin in MG-63 Osteosarcoma Cells

  • Lee, Hye Ja;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.21 no.3
    • /
    • pp.204-209
    • /
    • 2013
  • Osteoprotegerin (OPG) is a secreted glycoprotein and a member of the tumor necrosis factor receptor superfamily. It usually functions in bone remodeling, by inhibiting osteoclastogenesis through interaction with a receptor activator of the nuclear factor ${\kappa}B$ (RANKL). Transglutaminases-2 (Tgase-2) is a group of multifunctional enzymes that plays a role in cancer cell metastasis and bone formation. However, relationship between OPG and Tgase-2 is not studied. Therefore, we investigated the involvement of 12-O-Tetradecanoylphorbol 13-acetate in the expression of OPG in MG-63 osteosarcoma cells. Interleukin-$1{\beta}$ time-dependently induced OPG and Tgase-2 expression in cell lysates and media of the MG-63 cells by a Western blot. Additional 110 kda band was found in the media of MG-63 cells. 12-O-Tetradecanoylphorbol 13-acetate also induced OPG and Tgase-2 expression. However, an 110 kda band was not found in TPA-treated media of MG-63 cells. Cystamine, a Tgase-2 inhibitor, dose-dependently suppressed the expression of OPG in MG-63 cells. Gene silencing of Tgase-2 also significantly suppressed the expression of OPG in MG-63 cells. Next, we examined whether a band of 110 kda of OPG contains an isopeptide bond, an indication of Tgase-2 action, by monoclonal antibody specific for the isopeptide bond. However, we could not find the isopeptide bond at 110 kda but 77 kda, which is believed to be the band position of Tgase-2. This suggested that 110 kda is not the direct product of Tgase-2's action. All together, OPG and Tgase-2 is induced by IL-$1{\beta}$ or TPA in MG-63 cells and Tgase-2 is involved in OPG expression in MG-63 cells.

Anti-fatigue effect of fermented porcine placenta through the regulation of fatigue-associated inflammatory cytokines

  • Nam, Sun-Young;Go, Ji-Hyun;Lee, Mikyung;Kim, Jongbae;Jeong, Hyein;Lee, Won Kyung
    • CELLMED
    • /
    • v.6 no.2
    • /
    • pp.13.1-13.7
    • /
    • 2016
  • Fatigue is a common complaint and affects the quality of life in modern people. Physical stress may induce activation of certain immune cells. Fermented porcine placenta (FPP) has been used to alleviate fatigue. Inflammatory cytokines are produced by physical stress and results in symptoms of fatigue. However, the role of FPP on fatigue-associated inflammatory cytokine production has not been elucidated yet. Thus, we estimated the anti-fatigue effect of FPP and its active components, leucine (Leu) and lysine (Lys) in activated RAW264.7 macrophages and forced swimming test (FST) fatigue animal model. Pretreatment with FPP, Leu, or Lys significantly inhibited the lipopolysaccharide (LPS)-induced tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 production without inducing cytotoxicity on LPS-stimulated RAW264.7 macrophages. FPP, Leu, or Lys inhibited the production of nitric oxide and downregulated the expression of inducible nitric oxide synthase on LPS-stimulated RAW264.7 macrophages. Furthermore, caspase-1 activities increased by LPS were significantly reduced by FPP, Leu, or Lys. In the FST, inflammatory cytokine levels of the mice administrated with FPP, Lys, and Leu were significantly reduced compared with the control group at 21 days. Collectively, these results show that anti-fatigue effect of FPP and its active components, Leu and Lys might be derived from the down-regulating of inflammatory mediators.

Screening of Herbal Medicines for Synergistic Effects of Metformin and Herbal Extracts Combination in RAW 264.7 Cells (RAW 264.7 세포에서 Metformin과 병행투여 시 상승효과를 나타내는 한약재의 선별 연구)

  • Kim, Hyung-Gu;Wang, Jing-Hua;Chae, Hee-Sung;Chin, Young-Won;Choi, Han-Seok;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.14 no.1
    • /
    • pp.13-23
    • /
    • 2014
  • Objectives: This study was performed to evaluate the effects of Metformin and Lonicerae Flos, Agrobacterium Rhizogenes, Coptidis Rhizoma, Atractylodis Rhizoma Alba, Houttuyniae Herba extracs combinations on hypoglycemia in RAW 264.7 cells. Methods: Expressions of Sirt1, p-adenosine monophosphate-activated kinase (p-AMPK), AMPK-alpha, peroxisome proliferator activated receptor (PPAR)-alpha, PPAR-gamma, X-box binding protein 1 (XBP-1), tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 were analyzed by real time polymerase chain reaction and Western blotting analysis. Results: The level of gene expression of Sirt1, p-AMPK, AMPK-alpha, PPAR-alpha and XBP-1 in relation to that of beta-actin were increased or decreased significantly with the Metformin and Lonicerae Flos, Agrobacterium Rhizogenes extracts combination groups. The level of gene expression of TNF-alpha and IL-6 were increased significantly with the Metformin and Houttuyniae Herba, Coptidis Rhizoma extracts combination groups. Conclusions: Metformin and Lonicerae Flos, Agrobacterium Rhizogenes extracts combination groups showed synergistic hypoglycemic effects by increasing AMPK and PPAR gene expression in RAW 264.7 cells.

BIRB 796 has Distinctive Anti-inflammatory Effects on Different Cell Types

  • Ryoo, Soyoon;Choi, Jida;Kim, Jaemyung;Bae, Suyoung;Hong, Jaewoo;Jo, Seunghyun;Kim, Soohyun;Lee, Youngmin
    • IMMUNE NETWORK
    • /
    • v.13 no.6
    • /
    • pp.283-288
    • /
    • 2013
  • The pro-inflammatory cytokines tumor necrosis factor-${\alpha}$ (TNF${\alpha}$) and interleukin (IL)-$1{\beta}$ are crucial mediators involved in chronic inflammatory diseases. Inflammatory signal pathways regulate inflammatory cytokine expression-mediated by p38 mitogen activated protein kinase (p38MAPK). Therefore, considerable attention has been given to p38MAPK as a target molecule for the development of a novel anti-inflammatory therapeutics. BIRB 796, one of p38MAPK inhibitor, is a candidate of therapeutic drug for chronic inflammatory diseases. In this study, we investigated the effect of BIRB 796 on inflammatory cytokine productions by lipopolysaccharide (LPS) in different immune cell types. BIRB 796 reduced LPS-mediated IL-8 production in THP-1 cells but not in Raw 264.7 cells. Further analysis of signal molecules by western blot revealed that BIRB 796 sufficiently suppressed LPS-mediated phosphorylation of p38MAPK in both cell types whereas it failed to block inhibitor of kappa B (I-${\kappa}B$) degradation in Raw 264.7 cells. Taken together, these results suggest that the anti-inflammatory function of BIRB 796 depends on cell types.

Yijung-tang, a Traditional Herbal Formula, Exerts Anti-allergic Effect by Regulating Production of Th2-Type Chemokines and Cytokines (Th2 사이토카인 및 케모카인 분비 조절을 통한 이중탕의 항알러지 효능 연구)

  • Jeong, Soo-Jin;Seo, Chang-Seob;Lee, Mee-Young;Shin, Hyeun-Kyoo
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.2
    • /
    • pp.160-166
    • /
    • 2015
  • Yijung-tang (YJT) is a traditional herbal formula comprising 4 medicinal herbs. In the present study, we performed the simultaneous analysis for three compounds of YJT and examined anti-allergic effects in vitro. The column for separation of three compounds was used Gemini C18 column and maintained at 40$^{\circ}C$. The mobile phase for gradient elution consisted of two solvent systems. To evaluate Th2 chemokines, YJT was treated into tumor necrosis factor (TNF)-${\alpha}$ and interferon (IFN)-${\gamma}$-stimulated HaCaT cells, and performed ELISA for thymus and activation regulated chemokine (TARC) and regulated on activation, normal T-cell expressed and secreted (RANTES). To measure Th2 cytokines, YJT was added into primary mouse splenocytes, and performed ELISA for interleukin (IL)-4, 5, 13. Calibration curves were acquired with r2 >0.9999. The contents of liquiritin, glycyrrhizin, and 6-gingerol in YJT were 4.50 mg/g, 11.10 mg/g, and 1.33 mg/g, respectively. YJT inhibited production of TARC and RANTES in TNF-${\alpha}$ and IFN-${\gamma}$-treated HaCaT cells. YJT also reduced production of IL-4, 5, and 13 in primary mouse splenocytes. In conclusion, our data will be a valuable information to improve quality control and anti-allergic effects of YJT.

Preventive Effect of Lactobacillus Fermentation Extract on Inflammation and Cytokine Production in Lipopolysaccharide-Induced Cystitis in Mice

  • Yoon, Hyun Suk;Kim, Yong Tae;Shim, Bong Suk;Yoon, Hana
    • Urogenital Tract Infection
    • /
    • v.13 no.3
    • /
    • pp.51-57
    • /
    • 2018
  • Purpose: The effects of Lactobacillus fermentation extract (LFE) on cystitis induced by Escherichia coli lipopolysaccharide (LPS) in the mouse bladder were investigated by pathological analyses and measurement of the levels of tumor necrosis factor-alpha ($TNF-{\alpha}$) and interleukin-18 (IL-18). Materials and Methods: LFE was administered orally ($5{\mu}g/L$) to mice for 10 days after which the study group (n=12) received transurethral injection of $5{\mu}g/L$ LPS. The bladder tissue was then harvested after 24 hours and subjected to hematoxylin and eosin staining. A semi-quantitative score was used to evaluate inflammation (bladder inflammation index, BII). $TNF-{\alpha}$ immunohistochemical staining and multiplex cytokine assays were also performed. $TNF-{\alpha}$ and IL-18 levels were determined. The results were compared with those of the control group (n=12). Results: The BII in the control and study groups was $2.7{\pm}0.5$ and $1.1{\pm}0.7$, respectively, with the control group scores differing significantly from the study group scores (p<0.001). $TNF-{\alpha}$ immunohistochemical staining results were similar. The $TNF-{\alpha}$ levels determined by the multiplex cytokine assay were $2.82{\pm}1.35pg/mg$ and $1.55{\pm}0.56pg/mg$ for the control and study groups, respectively, and the difference between these groups was statistically significant (p=0.007). Conclusions: Oral administration of LFE appears to have a preventive effect against the inflammatory responses and $TNF-{\alpha}$ expression induced by transurethral instillation of LPS in the mouse bladder. Further studies are required to determine the clinical application of this finding.

Effects of Red Koji-Fermented Bupleuri Radix Extracts on Lipopolysaccharide-Induced Rat Acute Lung Injury (홍국발효 시호(柴胡)가 Lipopolysaccharide로 유발된 급성 폐 손상에 미치는 영향)

  • Seo, Young-ho;Jung, Tae-young;Kim, Jong-dea;Choi, Hae-yun
    • 대한상한금궤의학회지
    • /
    • v.13 no.1
    • /
    • pp.21-44
    • /
    • 2021
  • Objective : This study aimed to assess the preventive effect of Bupleuri Radix aqueous extracts (BR) and red koji-fermented BR (fBR) in lipopolysaccharide (LPS)-induced acute lung injury in a rat model. Methods : Rats were administered 30, 60, or 120 mg/kg/day of fBR for 28 days before LPS treatments. All rats were sacrificed 5 h after LPS treatment (500 ㎍/head, intratracheal instillation). Body weights, lung weights, pulmonary transcapillary albumin transit, arterial gas parameters (pH, partial pressure [Pa] of O2, PaCO2), bronchoalveolar lavage fluid (BALF) protein, lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), total cell numbers, neutrophil/alveolar macrophage ratios, lung malondialdehyde (MDA), and myeloperoxidase (MPO) were measured. In addition, histopathological changes including the luminal surface of alveoli (LSA), thickness of alveolar septum, and number of polymorphonuclear neutrophils (PMNs) were checked. Results : LPS injection led to increases in lung weights, pulmonary transcapillary albumin transit, BALF protein, LDH, TNF-α and IL-1β contents, total cells, neutrophil and alveolar macrophage ratios, lung MDA, MPO, alveolar septum thickness, and PMNs, and decreases in PaCO2 and pH of arterial blood and LSA. However, these LPS-induced acute lung injuries were inhibited by pretreatment of 30, 60, and 120 mg/kg of fBR. The most favorable effects were seen with 30 mg/kg fBR as compared with 60 mg/kg of α-lipoic acid and BR. Conclusions : fBR showed preventive effects on LPS-induced acute lung injury, which resembles acute respiratory distress syndrome. The mechanisms of action were likely via antioxidant and anti-inflammatory means.

Evaluation of Anti-Asthmatic Activity of Essential Oils from the Lauraceae Family in Lipopolysaccharide (LPS)-Stimulated NCI-H292 Cells

  • Jiyoon, YANG;Su-Yeon, LEE;Hyunjeong, NA;Soo-Kyeong, JANG;Mi-Jin, PARK
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.414-426
    • /
    • 2022
  • The Lauraceae family has commercial uses, such as in the food, pharmaceutical, and perfume industries. This study was conducted to investigate anti-asthmatic activity of essential oils from the seven species in the Lauraceae family. The essential oils were extracted from the leaves of seven species, and the chemical composition was investigated by gas chromatography-mass spectrometry. The major constituents of essential oils differed depending on the species, even if they belonged to the same family. The main constituents were camphor (89.09%) in Cinnamomum camphora, linalool (26.91%) in Cinnamomum cassia, 1,8-cineole (23.90%) in Cinnamomum japonicum, d-limonene (10.27%) and β-eudesmol (10.03%) in Lindera obtusiloba, δ-cadinene (13.85%) and α-phellandrene (11.57%) in Machilus japonica, cis-,trans-β-ocimene (13.80% and 12.06%) and elemol (11.46%) in Neolitsea aciculata, and cis-β-ocimene (37.94%) and sabinene (24.91%) in Neolitsea sericea. The anti-asthmatic activity of essential oils was investigated using the lipopolysaccharide-induced NCI-H292 cells. The relative expression levels of the pro-inflammatory cytokines [interleukin (IL)-1β and IL-6] and mucus gene (MUC5AC and MUC5B) were significantly reduced by essential oils from seven species in the Lauraceae family. Among the seven essential oils, the essential oil from L. obtusiloba had the most superior anti-asthmatic activity. These results suggest that the essential oil of L. obtusiloba leaves could be used as an agent to suppress mucus hypersecretion.

Anti-inflammatory Effect of Boswellia sacra (Franckincense) Essential Oil in a Mouse Model of Allergic Asthma (알러지성 천식 모델 생쥐에서 프랑킨센스 에센셜 오일의 염증 억제 효과)

  • Lee, Hye-Youn;Yun, Mi-Young;Kang, Sang-Mo
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.343-352
    • /
    • 2008
  • Frankincense, the gum resin derived from Boswellia species, is complex mixtures composed of about $5{\sim}9%$ highly aromatic essential oil, $65{\sim}85%$ alcohol-soluble resins, and the remaining water-soluble gums. The anti-inflammatory properties of frankincense, alcohole-soluble resins, are well-recognized, but the question of whether aromatic essential oil also plays a role in the allergic asthma remains unanswered. This study was performed to evaluate anti-inflammatory effects of Boswellia sacra essential oil (BSEO) on ovalbumin (OVA)-induced asthma mouse model. BALB/c mice after intraperitoneal OVA sensitization were challenged with intratracheal OVA. One experimental group was inhaled with 0.3% BSEO for the later 8 weeks. BALB/c mice were sensitized and challenged with OVA and developed airway eosinophilia, mucus hypersecretion, and airway hyperresponsiveness. In contrast, the BSEO treated mice had reduced a number of eosinophils among BALF cells, goblet cell hyperplasia, and airway hyperresponsiveness. Cytokine analysis of BALF revealed that BSEO caused an increase in Th1 cytokine (interferon-$\gamma$ (IFN-$\gamma$)) and a decrease in Th2 cytokines (interleukin-4 (IL-4), IL-5 and IL-13) levels. In addition, the OVA-specific serum IgE and eotaxin levels were also reduced. In mice inhaled BSEO, $CD4^+$, $CD3^+/CCR3^+$, and $B220^+/CD23^+$ mediastinal lymph nodes cells were also decreased. These results suggest that inhaled BSEO as a immunomodulator in Th1/Th2 mediated asthma may have therapeutic potential for the treatment in allergic airway inflammation by a simple, cost-effective way.

Expanded IL-22+ Group 3 Innate Lymphoid Cells and Role of Oxidized LDL-C in the Pathogenesis of Axial Spondyloarthritis with Dyslipidaemia

  • Hong Ki Min;Jeonghyeon Moon;Seon-Yeong Lee;A Ram Lee;Chae Rim Lee;Jennifer Lee;Seung-Ki Kwok;Mi-La Cho;Sung-Hwan Park
    • IMMUNE NETWORK
    • /
    • v.21 no.6
    • /
    • pp.43.1-43.14
    • /
    • 2021
  • Group 3 innate lymphoid cells (ILC3), which express IL-22 and IL-17A, has been introduced as one of pathologic cells in axial spondyloarthritis (axSpA). Dyslipidaemia should be managed in axSpA patients to reduce cardiovascular disease, and dyslipidaemia promotes inflammation. This study aimed to reveal the role of circulating ILC3 in axSpA and the impact of dyslipidaemia on axSpA pathogenesis. AxSpA patients with or without dyslipidaemia and healthy control were recruited. Peripheral blood samples were collected, and flow cytometry analysis of circulating ILC3 and CD4+ T cells was performed. The correlation between Ankylosing Spondylitis Disease Activity Score (ASDAS)-C-reactive protein (CRP) and circulating immune cells was evaluated. The effect of oxidized low-density lipoprotein cholesterol (oxLDL-C) on immune cell differentiation was confirmed. AxSpA human monocytes were cultured with with oxLDL-C, IL-22, or oxLDL-C plus IL-22 to evaluate osteoclastogenesis using tartrate-resistant acid phosphatase (TRAP) staining and real-time quantitative PCR of osteoclast-related gene expression. Total of 34 axSpA patients (13 with dyslipidaemia and 21 without) were included in the analysis. Circulating IL-22+ ILC3 and Th17 were significantly elevated in axSpA patients with dyslipidaemia (p=0.001 and p=0.034, respectively), and circulating IL-22+ ILC3 significantly correlated with ASDAS-CRP (Rho=0.4198 and p=0.0367). Stimulation with oxLDL-C significantly increased IL-22+ ILC3, NKp44- ILC3, and Th17 cells, and these were reversed by CD36 blocking agent. IL-22 and oxLDL-C increased TRAP+ cells and osteoclast-related gene expression. This study suggested potential role of circulating IL-22+ ILC3 as biomarker in axSpA. Furthermore, dyslipidaemia augmented IL-22+ ILC3 differentiation, and oxLDL-C and IL-22 markedly increased osteoclastogenesis of axSpA.