• Title/Summary/Keyword: Interlace Design

Search Result 33, Processing Time 0.019 seconds

A Study on Simple chip Design that Convert Improved YUV signal to RGB signal (개선된 YUV신호를 RGB신호로 변환하는 단일칩 설계에 관한 연구)

  • Lee, Chi-Woo;Park, Sang-Bong;Jin, Hyun-Jun;Park, Nho-Kyung
    • Journal of IKEEE
    • /
    • v.7 no.2 s.13
    • /
    • pp.197-209
    • /
    • 2003
  • A current TV out format is quite different from that of HDTV or PC monitor in encoding techniques. In other words, a conventional analog TV uses interlaced display while HDTV or PC monitor uses Non-interlaced / Progressive-scanned display. In order to encode image signals coming from devices that takes interlaced display format for progressive scanned display, a hardware logic in which scanning and interpolation algorithms are implemented is necessary. The ELA(Edge-Based Line Average) algorithm have been widely used because it provided good characteristics. In this study, the ADI(Adaptive De-interlacing Interpolation) algorithm using to improve the ELA algorithm which shows low quality in vertical edge detections and low efficiency of horizontal edge lines. With the De-interlacing ASIC chip that converts the interlaced Digital YUV to De-interlaced Digital RGB is designed. The VHDL is used for chip design.

  • PDF

Spray Modeling: An Augmented Reality Based Tangible 3D Modeling Interface (스프레이 모델링: 증강현실 기반의 실체적인 3차원 모델링 인터페이스 제안)

  • Jung, Hee-Kyoung;Nam, Tek-Jin
    • Archives of design research
    • /
    • v.18 no.4 s.62
    • /
    • pp.119-128
    • /
    • 2005
  • This paper presents an intuitive 3D modeling interlace based on a field study and prototype development. The process and tools of modeling were observed in workshops of professional design model making, day modeling, wood caning and glass crafting. The Spray Modeling interlace was developed from the observational analysis of the field study. It is a 3D modeling interface which combines particle spraying and day modeling in Virtual or Augmented Reality space. Virtual volume particles are sprayed on frames in Augmented Reality space as day modeling. It adopts a real air spay gun as a tangible interface device which provides coherent sound and air-force feedback. The prototype development and a user study showed that the interface supports new patterns of form development and expression. Control interfaces and requirements of auxiliary devices were found to be improved. This study examines the potential of the new interlace for designers working in 3D virtual and augmented reality. The new spraying interface is also expected to be used as an alternative interface in 3D computer workspace, games, education software and media art.

  • PDF

Tangible Interaction : Application for A New Interface Method for Mobile Device -Focused on development of virtual keyboard using camera input - (체감형 인터랙션 : 모바일 기기의 새로운 인터페이스 방법으로서의 활용 -카메라 인식에 의한 가상 키보드입력 방식의 개발을 중심으로 -)

  • 변재형;김명석
    • Archives of design research
    • /
    • v.17 no.3
    • /
    • pp.441-448
    • /
    • 2004
  • Mobile devices such as mobile phones or PDAs are considered as main interlace tools in ubiquitous computing environment. For searching information in mobile device, it should be possible for user to input some text as well as to control cursor for navigation. So, we should find efficient interlace method for text input in limited dimension of mobile devices. This study intends to suggest a new approach to mobile interaction using camera based virtual keyboard for text input in mobile devices. We developed a camera based virtual keyboard prototype using a PC camera and a small size LCD display. User can move the prototype in the air to control the cursor over keyboard layout in screen and input text by pressing a button. The new interaction method in this study is evaluated as competitive compared to mobile phone keypad in left input efficiency. And the new method can be operated by one hand and make it possible to design smaller device by eliminating keyboard part. The new interaction method can be applied to text input method for mobile devices requiring especially small dimension. And this method can be modified to selection and navigation method for wireless internet contents on small screen devices.

  • PDF

An optimum design study of interlacing nozzle by using Computational Fluid Dynamics

  • Juraeva Makhsuda;Ryu Kyung-Jin;Kim Sang-Dug;Song Dong-Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.395-397
    • /
    • 2006
  • Air interlacing serves to protect the yarn against damage, strengthens inter-filament compactness or cohesion, and ensures fabric consistency. The air interlacing nozzle is used to introduce intermittent nips to a filament yarn so as to improve its performance in textile processing. The effect of various interlacing nozzle geometries on the interlacing process was studied. The geometries of interlacing nozzles with single or multiple air inlets located across the width of yarn channels are investigated. The basis case is the yarn channel, with a perpendicular main air inlet in the middle. Other cases have main air inlets, slightly inclined double sub air inlets, The yarn channel cross sectional shapes are either semicircular or rectangular shapes. The compressed impinging jet from the main air inlet hole hits the opposing bottom wall of the yarn channel, is divided into two branches, joins with the compressed air coming out from sub air inlet at the bottom and creates two free jets at both ends of the yarn channel. The compressed air movement in the cross-section consists of two opposing directional vortices. The CFD-FASTRAN flow parallel solver was used to perform steady simulations of impinging jet flow inside of the interlace nozzles. The vortical structure and the flow pattern such as pressure contour, particle traces, velocity vector plots inside of interlace nozzle geometry are discussed in this pater.

  • PDF

Development of An Integrated Test Facility (ITF) for the Advanced Man Machine Interface Evaluation

  • Oh, In-Seok;Cha, Kyung-Ho;Lee, Hyun-Chul;Sim, Bong-Sick
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.117-122
    • /
    • 1995
  • An Integrated Test Facility(ITF) is a human factors experimental environment to evaluate an advanced man machine interface(MMI) design. The ITF includes a human machine simulator(HMS) comprised of a nuclear power plant function simulator, man-machine interface, experiment control station for the experiment control and design, human behavioural data measurement system, and data analysis and experiment evaluation supporting system(DAEXESS). The most important features of ITF is to secure the flexibility and expandibility of Man Machine Interlace(MMI) design to change easily the environment of experiments to accomplish the experiment's objects In this paper, we describe a development scope and characteristics of the ITF such as, hardware and software development scope and characteristics, system thermohydraulic modelling characteristics, and experiment station characteristics for the experiment variables design and control, to be used as an experiment environment for the evaluation of VDU-based control room.

  • PDF