• 제목/요약/키워드: Interior permanent magnet synchronous generator

검색결과 12건 처리시간 0.016초

특수차량용 엔진 직결형 IPMSG의 넓은 속도운전 범위를 위한 부스트/약자속 제어기에 관한 연구 (A Study on Boost/Flux-Weakening Controller for Wide Speed Operation Range having Engine and IPMSG for Special Equipment Vehicle)

  • 이상건;김성안;조윤현
    • 조명전기설비학회논문지
    • /
    • 제28권8호
    • /
    • pp.54-61
    • /
    • 2014
  • This paper proposes a boost/flux-weakening controller (BFWC) for wide speed operation range having engine and interior permanent magnet synchronous generator (IPMSG) for special equipment vehicle. The proposed BFWC exploits direct torque/flux control (DTFC) scheme based on space vector modulation method to control the constant DC voltage output within the entire speed operation range of engine. And, to improve the response characteristics of maximum torque per ampere (MTPA) operation and flux-weakening operation, the MTPA and flux-weakening feed-forward controllers are applied. To estimate feasibility and usefulness of the proposed controller, the simulation and experimental results are compared.

An Off-line Maximum Torque Control Strategy of Wound Rotor Synchronous Machine with Nonlinear Parameters

  • Wang, Qi;Lee, Heon-Hyeong;Park, Hong-Joo;Kim, Sung-Il;Lee, Geun-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.609-617
    • /
    • 2016
  • Belt-driven Starter Generator (BSG) differs from other mild hybrid systems as the crankshaft of vehicle are not run off. Motor permits a low-cost method of adding mild hybrid capabilities such as start-stop, power assist, and mild levels of regenerative braking. Wound rotor synchronous motor (WRSM) could be adopted in BSG system for HEV e-Assisted application instead of the interior permanent magnet synchronous motor (IPMSM). In practice, adequate torque is indispensable for starter assist system, and energy conversion should be taken into account for the HEV or EV as well. Particularly, flux weakening control is possible to realize by adjusting both direct axis components of current and field current in WRSM. Accordingly, this paper present an off-line current acquisition algorithm that can reasonably combine the stator and field current to acquire the maximum torque, meanwhile the energy conversion is taken into consideration by losses. Besides, on account of inductance influence by non-uniform air gap around rotor, nonlinear inductances and armature flux linkage against current variation are proposed to guarantee the results closer to reality. A computer-aided method for proposed algorithm are present and results are given in form of the Look-up table (LUT). The experiment shows the validity of algorithm.