• Title/Summary/Keyword: Intergranular crack

Search Result 75, Processing Time 0.023 seconds

Effect of grain boundary precipitation on low-cycle fatigue behavior aat elevated temperature of SUS 316 stainless steel (SUS 316鋼 의 高溫低사이클 피勞擧動 에 미치는 粒界절出物 의 影響)

  • 오세욱;국미무;산전방박;좌등철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.4 no.4
    • /
    • pp.152-159
    • /
    • 1980
  • The temperature and the grain boundary precipitation have the great influence on the low-cycle fatigue behavior of austenite stainless steel at elevated temperature. For the purpose of investigating the mechanism concerning the change of fatigue micro crack mode in SUS 316 under various conditions low-cycle fatigue test was carried out at the elevated temperature 600.deg.C, plastic strain range 2% and constant strain rate .5c.p.m. A special attention is given to the observation of intergranular crack initiation. The results obtained are summarized as follows. The low-cycle fatigue behavior of SUS 316 at 600.deg.C is affected by transition of crack initiation mode from intergranular to transgranular. The transition is due to the aging effect, which is caused by grain boundary precipitations of Cr$\_$23/C$\_$6/. Since the intergranular crack initiation is brought about by the grain boundary sliding, the transgranular crack initiates in case that the strengthening of grain boundary due to the precipitation of Cr$\_$23/C$\_$6/ carbides takes place ahead of the intergranular crack initiation.

TECHNIQUES FOR INTERGRANULAR CRACK FORMATION AND ASSESSMENT IN ALLOY 600 BASE AND ALLOY 182 WELD METALS

  • LEE, TAE HYUN;HWANG, IL SOON;KIM, HONG DEOK;KIM, JI HYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.102-114
    • /
    • 2015
  • Background: A technique developed to produce artificial intergranular stress corrosion cracks in structural components was applied to thick, forged alloy 600 base and alloy 182 weld metals for use in the qualification of nondestructive examination techniques for welded components in nuclear power plants. Methods: An externally controlled procedure was demonstrated to produce intergranular stress corrosion cracks that are comparable to service-induced cracks in both the base and weld metals. During the process of crack generation, an online direct current potential drop method using array probes was used to measure and monitor the sizes and shapes of the cracks. Results: A microstructural characterization of the produced cracks revealed realistic conformation of the crack faces unlike those in machined notches produced by an electrodischarge machine or simple fatigue loading using a universal testing machine. Conclusion: A comparison with a destructive metallographic examination showed that the characteristics, orientations, and sizes of the intergranular cracks produced in this study are highly reproducible.

Study on the hydrogen embrittlement crack susceptibility of stainless steel overlaid weld metal (1) (스테인레스강 Overlay용접부의 수소취화 균열감수성에 관한 연구 1)

  • 이영호
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.39-52
    • /
    • 1990
  • The research is to insure the soundness of the stainless steel overlaid weld metal(21/4Cr-IMo steel + SUS 309L) for a pressure vessel application. Detail studies were conducted for the PWHT influence on the micrstructure and intergranular corrosion characteristics of the overlaid weld metal as well as initiation of hydrogen embrittlement crack(or Disbonding) when welded metal are exposed to the hydrogen atmosphere. Hydrogen was experimentally charged to the overlaid weld metal in order to study PWHT effect on the susceptibility of hydrogen embrittlement crack. The results of this research are as follows: 1. At the bond region, austenite grain of the stainless steel side became coarsed and Cr23C6 type carbide was precipitated at the coarsed austenitic grain boundaries. Intergranular Corrosion width(by Straiss test) increased with increasing PWHT temperature and PWHT time.

  • PDF

A Study on Analysis of J85 Engine V.G. Actuator Arm Shaft Crack

  • Hwang, Young-Ha;Son, Kyung-Sug;Kim, Tae-Gu
    • International Journal of Safety
    • /
    • v.8 no.1
    • /
    • pp.6-9
    • /
    • 2009
  • The crack in a J85 engine V.G. actuator arm shaft for a bell crank on the engine compressor was investigated. The crack was observed in twenty two shafts during the inspection of 238 shafts. The failure analysis of shaft cracks was performed by chemical composition analysis using ICP(Inductively Coupled Plasma) and by fracture surface and microstructure analysis using FE-SEM and optical microscope. The crack initiated from the top and bottom and propagated to the center along the grain boundaries. From the chemical composition analysis, the fractography of the fracture surface and the microstructure, it was found that the failure mechanism of the shafts is the inclusion-related intergranular decohesion crack. The inclusion was found out from MnS particle by EDS(Energy Dispersive Spectroscopy). The crack initiated MnS inclusion in the grain boundary and propagated with the increase of applied shear stress during long operation. In order to prevent the fracture, NDI(Nondestructive inspection) is needed periodically as recommended.

CONSIDERATIONS FOR METALLOGRAPHIC OBSERVATION OF INTERGRANULAR ATTACK IN ALLOY 600 STEAM GENERATOR TUBES

  • HUR, DO HAENG;CHOI, MYUNG SIK;LEE, DEOK HYUN;HAN, JUNG HO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.934-938
    • /
    • 2015
  • This technical note provides some considerations for the metallographic observation of intergranular attack (IGA) in Alloy 600 steam generator tubes. The IGA region was crazed along the grain boundaries through a deformation by an applied stress. The direction and extent of the crazing depended on those of the applied stress. It was found that an IGA defect can be misevaluated as a stress corrosion crack. Therefore, special caution should be taken during the destructive examination of the pulled-out tubes from operating steam generators.

Oxidation Behavior around the Stress Corrosion Crack Tips of Alloy 600 under PWR Primary Water Environment (PWR 1차측 환경에서 Alloy 600 응력부식균열 선단 부근에서의 산화 거동)

  • Lim, Yun Soo;Kim, Hong Pyo;Hwang, Seong Sik
    • Corrosion Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.141-150
    • /
    • 2012
  • Stress corrosion cracks in Alloy 600 compact tension specimens tested at $325^{\circ}C$ in a simulated primary water environment of pressurized water reactor were analyzed by analytical transmission electron microscopy and secondary ion mass spectroscopy (SIMS). From a fine-probe chemical analysis, oxygen was found on the grain boundary just ahead of the crack tip, and chromium oxides were precipitated on the crack tip and the grain boundary attacked by the oxygen diffusion, leaving a Cr/Fe depletion (or Ni enrichment) zone. The oxide layer inside the crack was revealed to consist of a double (inner and outer) layer. Chromium oxides existed in the inner layer, with NiO and (Ni,Cr) spinels in the outer layer. From the nano-SIMS analysis, oxygen was detected at the locations of intergranular chromium carbides ahead of the crack tip, which means that oxygen diffused into the grain boundary and oxidized the surfaces of the chromium carbides. The intergranular chromium carbide blunted the crack tip, thereby suppressing the crack propagation.

The Effects of Heat Treatment on Intergranular Carbide Precipitations and Intergranular Stress Corrosion Cracking of Inconel alloy (인코넬 합금의 열처리에 따른 입계 탄화물 석출 및 입계응력부식 거동)

  • Maeng, Wan-Young;Nam, Tae-Woon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.4
    • /
    • pp.219-231
    • /
    • 1997
  • Inconel alloys used as nuclear power plant components have experienced intergranular stress corrosion cracking problems inspite of their good corrosion characteristics. In order to investigate the effects of heat treatments on carbide precipitation and intergranular stress corrosion cracking(IGSCC) in Inconel alloys, DSC(Differential Scanning Calorimeter), TEM, EDXS and static potential corrosion tests were carried out. Thermal treatment at $750^{\circ}C$ for 15hours in Inconel alloys increased the density of intergranular carbide. The carbides are mainly $Cr_7C_3$ in Inconel 600, and $Cr_{23}C_6$ in Inconel 690. The Cr depletion around grain boundary is not crucial factor on IGSCC. The carbides in grain boundary play an important role as acting dislocation source, and as decreasing stress around growing crack.

  • PDF

The Fabrication and Characteristics of Porous Ceramics by Pressureless Powder Packing Forming Method ; II, Mullite & Cordierite (무가압분말 충전성형법에 의한 다공성 세라믹스의 제조 및 특성 : II. 뮬라이트 & 코디어라이트)

  • 박정현;황명익;김동희;최환욱;김용남
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.671-678
    • /
    • 1999
  • Porous ceramics were fabricated from pressureless powder packing forming method using mullite and cordierite powders granulate by spray drying. The bending strength and shrinkage of porous ceramics were increased and their porosity were decreased with increasing temperature. It showed homogeneous distribution of 2$\mu\textrm{m}$ intergranular pores of mullite at 1400$^{\circ}C$, 2.5$\mu\textrm{m}$ intergranular pores of cordierite at 1300$^{\circ}C$ respedtively. Above that temperature intragranular particles were sintered and sintering by intergranular necking was extremely proceeded. In the test of thermal shock resistance sudden decrease of bending strength to $\Delta$T was not shown because intergranular large pore prevented sudden crack propagation.

  • PDF

Integrity Evaluation and Root Cause Analysis of Cracks at the Volute Tongue of Centrifugal Pump (원심펌프 벌류트 혀의 균열 원인분석 및 건전성 평가)

  • Park, Chi-Yong;Kim, Jin-Weon;Kim, Yang-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.4 s.9
    • /
    • pp.7-14
    • /
    • 2000
  • This paper provides integrity evaluation and root cause analysis for defects observed at volute tongue, or cutwater, of the operating centrifugal pump in power plant. The cause of the cracks are analyzed and reviewed from the viewpoint of the operation and maintenance of the pumps, and the sample obtained from the cracked volute tongue of the pump are examined. At first, in-situ hardness test and microstructure examination were performed to understand the cause of cracking at volute tongue. The evaluation of structural integrity and the possibility of the crack propagation is also evaluated. Cracks were typical intergranular cracking and propagated along with prior austenite grain boundary. At easing volute tongue, the hardness was higher than ASTM requirement and a large amount of intergranular Cr carbide was precipitated. These were due to high C content in material. P content was also higher than ASTM requirement. Therefore, Cr carbide precipitation and P segregation at grain boundary, caused by higher C and P content in material, resulted in intergranular cracking of casing volute tongue. This procedure for integrity evaluation and root cause analysis is used to guide, and support the pump designer and manufacturer's material selection and process design to avoid a costly, unplanned outage of plant.

  • PDF

정전위법에 의한 Alloy 600의 입계응력부식균열 거동 연구

  • 맹완영;강영환;일본명
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.111-116
    • /
    • 1996
  • IGSCC(Intergranular stress corrosion cracking) behaviors of Alloy 600 were studied by the electrchemical ten methods of controlling specimens electrode potentials in the active-passive transition region of anodic polarization curve. Anodic polarization and static potential tests of stressed C-ring type MA Alloy 600 were carried out in 10% NaOH at 300 $^{\circ}C$ for 7days. It was confirmed that IGSCC of Alloy 600 was accellerated by maintaining the specimen potential in the susceptible active-passive transition region of anodic polarization curve. An intergranular crack was initiated on the surface area of C-ring specimens where protective oxide layer was broken down. And the depth of the crack growth was about 100 ${\mu}$m during the testing periods.

  • PDF