• Title/Summary/Keyword: Interferometric Technique

Search Result 107, Processing Time 0.024 seconds

Development of Integrated fringe Analysis System: For Severe Noise-ridden Interferometric Image Analysis (통합 프린지 해석 시스템 개발 : 심한 잡음을 포함하는 간섭 이미지 해석용)

  • Kang, Min-Gu;Joo, Won-Jong;Cha, Dong-Jin;Kang, Bo-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1534-1541
    • /
    • 2003
  • A new window-based, user-friendly fringe analysis system is developed, especially for analyzing noisy interferograms. The system integrates three major techniques, that is fringe tracking, Phase shifting, and Fourier transform, into a single shell by employing a unified procedure. Since the system is made in a modular fashion and all processing modules can be shared for any technique, a user can select necessary modules and easily edit the applying order of them based on the user's analysis strategy, which should be changed depending on the noise level of the image. The system provides a high-level GUI and a variety of image handling tools and therefore users can easily access the system and produce the optimal results without giving up in the middle of a process even for severely noise-contaminated interferometric images.

Signal processing of interferometric sensor using modified ramp modulation (변형 램프변조를 이용한 간섭 센서의 신호처리)

  • Kang, Hyun-Sook;Yeh, Yun-Hae
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.342-348
    • /
    • 2007
  • A high-speed signal processor for Fabry-Perot interferometric sensors using modified ramp modulation is implemented. The main idea for the signal processing is to find a modulation waveform that could induce a linear frequency change in a laser diode to linearize the relationship between the optical phase shift and measurand. It is found that the waveform could be modeled as the addition of a linear term and an exponential term. A signal processor adopting modified ramp modulation technique is implemented and evaluated to find linearity, drift and random walk of $<{\pm}1.5%$, $0.4^{\circ}C$, $5.28{\times}10^{-4}^{\circ}C/{\sqrt{Hz}}$.

Fabrication of Mold-insert for Micro-lens Using Electroforming Process (Electroforming 공정을 이용한 마이크로 렌즈용 몰드 인서트의 제작)

  • 이남석;문수동;강신일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.94-97
    • /
    • 2002
  • Micromolding methods are most suitable for mass production of plastic microlens and lens array with low cost. Among the procedures related with micromolding of microlens array, fabrication of mold insect which contains micro cavity of lens shape is the most important stage. In this study, nickel mold inserts for 45 $\mu\textrm{m}$ and 95 $\mu\textrm{m}$ diameters lens way were fabricated using electroforming process. The mother for metal mold inset was made using reflow method. A micro compression molding with polymer powders was used to test the qualities of the metal mold insets. Micro lens profile and surface roughness was measured by interferometric technique and AFM, respectively. The final molded lens replicated the mother well, and had good surface quality.

  • PDF

Ground Settlement Monitoring using SAR Satellite Images (SAR 위성 영상을 이용한 도심지 지반 침하 모니터링 연구)

  • Chungsik, Yoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.55-67
    • /
    • 2022
  • In this paper, fundamentals and recent development of the interferometric synthetic aperture radar, known as InSAR, technique for measuring ground deformation through satellite image analysis are presented together with case histories illustrating its applicability to urban ground deformation monitoring. A study area in Korea was selected and processed based on the muti-temporal time series InSAR analysis, namely SBAS (Small Baseline Subset)-InSAR and PS (Persistent Scatterers)-InSAR using Sentinel-1A SAR images acquired from the year 2014 onward available from European Space Agency Copernicus Program. The ground settlement of the study area for the temporal window of 2014-2022 was evaluated from the viewpoint of the applicability of the InSAR technique for urban infrastructure settlement monitoring. The results indicated that the InSAR technique can reasonably monitor long-term settlement of the study area in millimetric scale, and that the time series InSAR technique can effectively measure ground settlement that occurs over a long period of time as the SAR satellite provides images of the Korean Peninsula at regular time intervals while orbiting the earth. It is expected that the InSAR technique based on higher resolution SAR images with small temporal baseline can be a viable alternative to the traditional ground borne monitoring method for ground deformation monitoring in the 4th industrial era.

CROSS-INTERFEROMETRY FOR DEM CONSTRUNTION WITH ERS-ENVISAT PAIR

  • Hong Sang-Hoon;Won Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.542-545
    • /
    • 2005
  • Spaceborne radar interferometry has been widely used to estimate the topography and deformation of the Earth. It is difficult to obtain coherent interferometric SAR pairs especially over coastal areas mainly because of variation of surface conditions. We carried out the experiment using a cross-interferometric pair with a perpendicular baseline of about 1.4 km, a 30 minutes temporal separation and the height sensitivity of about 6 meters. The temporal decorrelation can be reduced by the cross interferometric technique with a 30 minutes temporal separation. Accurate coregistration was performed through resampling of ENVISAT ASAR data to equivalent pixel spacing to the ERS SAR data, because of the differences of the pulse repetition frequency and range sampling rate between the two sensors. Then we estimated range and azimuth offset to a sub-pixel accuracy using image intensity cross correlation. A larger window chip size than a general case was used because it was difficult to distinguish typical features. As range bin increased, the difference of Doppler centroid also increased. It resulted in lower coherence in far range than in near range. Coherences over wetland in near and far range were about 0.8 and 0.5, respectively. The coherence was improved by applying azimuth and range common band filtering, but coherence gap still existed. ERS-ENVISAT cross-interferogram usually lost information in urban area. However, high coherence over a city in this pair was shown, because of less man-made structures than other major cities. Accuracy of the DEM constructed by the ERS-ENVISAT 30-minute pair in a coastal area is to be evaluated.

  • PDF

INTERFEROMETRIC MONITORING OF GAMMA–RAY BRIGHT ACTIVE GALACTIC NUCLEI II: FREQUENCY PHASE TRANSFER

  • ALGABA, JUAN-CARLOS;ZHAO, GUANG-YAO;LEE, SANG-SUNG;BYUN, DO-YOUNG;KANG, SIN-CHEOL;KIM, DAE-WON;KIM, JAE-YOUNG;KIM, JEONG-SOOK;KIM, SOON-WOOK;KINO, MOTOKI;MIYAZAKI, ATSUSHI;PARK, JONG-HO;TRIPPE, SASCHA;WAJIMA, KIYOAKI
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.5
    • /
    • pp.237-255
    • /
    • 2015
  • The Interferometric Monitoring of Gamma–ray Bright Active galactic nuclei (iMOGABA) program provides not only simultaneous multifrequency observations of bright gamma–ray detected active galactic nuclei (AGN), but also covers the highest Very Large Baseline Interferometry (VLBI) frequencies ever being systematically monitored, up to 129 GHz. However, observation and imaging of weak sources at the highest observed frequencies is very challenging. In the second paper in this series, we evaluate the viability of the frequency phase transfer technique to iMOGABA in order to obtain larger coherence time at the higher frequencies of this program (86 and 129 GHz) and image additional sources that were not detected using standard techniques. We find that this method is applicable to the iMOGABA program even under non–optimal weather conditions.

InSAR Studies of Alaskan Volcanoes

  • Lu Zhong;Wicks Chuck;Dzurisin Dan;Power John
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.47-52
    • /
    • 2004
  • Interferometric synthetic aperture radar (InSAR) is a remote sensing technique capable of measuring ground surface deformation with sub-centimeter precision and spatial resolution in tens-of-meters over a large region. This paper highlights our on-going investigations of Aleutian volcanoes with SAR images acquired from European ERS-1 and ERS-2, Canadian Radarsat-l, and Japanese JERS-l satellites.

  • PDF

A study on stabilization of a fiber-optic current sensor using sagnac interferometer (Sagnac 간섭계형 광섬유 전류센서의 안정화 연구)

  • 정래성;강현서;이종훈;송정태;이경식
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.4
    • /
    • pp.94-99
    • /
    • 1997
  • A new method of stbilizing the sagnac interferometric fiber optic current sensor inteh presence of birefringences and phase is presented. This method is realized by dividing the output of the ac current signal with the modulation signal output. Using the technique the stability of the current sensor was improve dmore than 4.5 times at 800Arms for 2 hours. The current sensor also shows good linearity up to 100Arms.

  • PDF

MOLECULAR OUTFLOWS AND THE FORMATION PROCESS OF VERY LOW-MASS OBJECTS

  • PHAN-BAO, NGOC;DANG-DUC, CUONG;LEE, CHIN-FEI;HO, PAUL T.P.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.83-86
    • /
    • 2015
  • We present observational results characterizing molecular outflows from very low-mass objects in ${\rho}$ Ophiuchi and Taurus. Our results provide us with important implications that clarify the formation process of very low-mass objects.

THE LONG BASELINE ARRAY

  • EDWARDS, PHILIP G.;PHILLIPS, CHRIS
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.659-661
    • /
    • 2015
  • The Long Baseline Array is an array of radio telescopes using the technique of Very Long Baseline Interferometry to achieve milli-arcsecond-scale angular resolution. The core telescopes are located in Australia, with telescopes in New Zealand and South Africa also participating regularly. In this paper the capabilities of the Long Baseline Array are described, and examples of the science undertaken with the array are given.