• Title/Summary/Keyword: Interference protection ratio

Search Result 41, Processing Time 0.03 seconds

The Analysis of Protection Ratio and Its Effect of Interference-to-Noise Ratio for Digital Microwave System with Diversity

  • Suh Kyoung-Whoan;Jang Won-Gyu
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.3
    • /
    • pp.189-195
    • /
    • 2006
  • In this paper, the derivation of the protection ratio for the digital microwave system with diversity is newly suggested for a basic guidance of initial planning for frequency coordination, and computational results are presented for an actual radio frequency band. The net filter discrimination has been also examined to see the effect of the adjacent channel protection ratio caused by adjacent channel interference. In addition, the protection ratios for the space or frequency diversity system are analyzed in terms of diversity improvement factors to find out an equivalent allowable noise-to-interference ratio (N/I) from degraded fade margin. According to results for 6.2 GHz system, with the space diversity of 25 m distance between antennas or the frequency diversity of ${\Delta}f/f=0.05$, under 64-QAM and 60 km at BER $10^{-6}$, the protection ratio can be greatly reduced in comparison to the non-diversity system. So, assuming that only the same protection ratio as the non-diversity system is kept, it is shown that the system with diversity may get more interference level of N/I allowing from 9.0 to - 5.9 dB or from 6.0 to - 4.3 dB for the space or frequency diversity. In consequence, it is concluded that the diversity system is more robust or tolerable for interferences or fades, which may play an important role in overcoming N/I to some extent.

A Study on the Protection Ratio of GPS (GPS 보호비 연구)

  • Yu, Byeong-Jae;Shim, Yong-Sup;Cho, Hyun-Mook;Lee, Il-Kyoo;Hong, Heon-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.296-301
    • /
    • 2011
  • GPS(Global Positioning System) service is more important than other wireless services. The GPS is necessary protected from any other interference signals. Therefore, GPS protection ratio was calculated on the basis of bit error rate(BER) in this paper. Simulation results show that the allowable maximum interference power is -190 dBm/Hz and the ratio of interference to noise(I/N) is -16 dB. The achieved protection ratio is available to be applied as the protection criteria of GPS in considering the implementation margin of 4 dB. As a result, the proposed protection ratio of GPS is expected to give standard for a stable GPS service.

A Study on Calculation of Protection Ratio for Frequency Coordination in Microwave Relay System Networks (M/W 중계 시스템 망의 주파수 조정을 위한 보호비 계산에 대한 연구)

  • Suh, Kyoung-Whoan;Lee, Joo-Hwan
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.125-130
    • /
    • 2005
  • This paper suggests an efficient method of protection ratio calculation and shows some calculated results applicable to frequency coordination in microwave relay system networks, and the net filter discrimination (NFD) associated with Tx spectrum mask and overall Rx filter characteristics has been examined to obtain the adjacent channel protection ratio. The protection ratio comprises several factors such as C/N of modulation scheme, noise-to-interference ratio, multiple interference allowance, fade margins of multi-path and rain attenuation, and NFD. According to computed results for 6.7 GHz, 64-QAM, and 60 km at BER $10^{-6}$, fade margin and co-channel protection ratio are 41.1 and 75.2 dB, respectively, In addition, NFD for channel bandwidth of 40 MHz reveals 28.9 dB at the first adjacent channel, which results in adjacent channel protection ratio of 46.3 dB. The proposed method provides some merits of an easy calculation, systematic extension, and applying the same concept to frequency coordination in millimeter wave relay system networks.

  • PDF

Protection of Digital TV from Cognitive Radio Interference

  • Yoon, Young-Keun;Hong, Heon-Jin;Choi, Ik-Guen
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.393-395
    • /
    • 2007
  • Analytic modeling and computational simulation for the protection of DTV from cognitive radio interference are performed. Protection is achieved by using the protection ratio, which is derived through system modeling and its analysis. On the frequency coordination between digital TV and cognitive radio, an analysis in a co-channel environment, in a rural area in Korea, is performed.

  • PDF

A Protection Ratio with Composite Fade Margin for Detailed Frequency Coordination in Microwave Relay System Network

  • Suh, Kyoung-Whoan
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.2
    • /
    • pp.83-90
    • /
    • 2007
  • In this paper, the formulation of the protection ratio based upon a composite fade margin and availability is newly presented for the detailed planning of frequency coordination in the microwave relay system network, and computed results for co-channel and adjacent channel protection ratios are illustrated over an actual system with 6.2 GHz. It is shown that the protection ratio to assure a quality of service can be expressed in terms of the composite fade margin, noise-to-interference ratio, net filter discrimination, and system parameters. In addition, the net filter discrimination, depending upon the transmitter spectrum mask and the overall receiver filter characteristic, has been examined to investigate the effect of the adjacent channel protection ratio caused by the adjacent channel interference. Regarding simulated results for 6.2 GHz, 60 km, 64-QAM, and N/I=6 dB at the bit error rate of $10^{-6}$, composite fade margin and co-channel protection ratio yield 25.14 and 50.3 dB, respectively. Also, the net filter discrimination of 26.5 dB and the adjacent channel protection ratio of 23.8 dB are obtained at the first adjacent channel of 30 MHz. The proposed method provides some merits in view of a comprehensive and practical application with more detailed and various system parameters needed to access the criteria for making the proper frequency coordination.

Interference Analysis Between Fixed Wireless System and Radar Operating in VHF/UHF Bands with Geographic Information (지리정보에 기반한 VHF/UHF 대역의 고정무선시스템과 레이더 간의 간섭분석)

  • Suh, Kyoung-Whoan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.40-47
    • /
    • 2013
  • By virtue of Rec. ITU-R P.1546 and geography information system, interference analysis for the fixed wireless system and radar has been presented based upon the frequency-distance rules with minimum coupling loss, and a comprehensive methodology for assessing interoperability between systems was examined in terms of received signal, protection ratio, frequency dependent rejection. Also to find the antenna gain from a discrimination angle, a useful S-I plane was introduced based on signal and interference vectors derived from the real map with geographic information. To show some computational results, geography information on the map was taken for the given area, and field strength and path profile were illustrated for the radar and fixed wireless system operating at 2.7 GHz, for convenience. In addition the interference effect of receiver was also checked as a function of radar beam direction including protection ratio and frequency dependent rejection. The developed interference analysis can be actually applied to evaluate interoperability for wireless systems in the VHF and UHF bands.

A Study on Calculation of Protection Ratio for Interference Analysis in Fixed Radio Relay Networks (고정 무선중계 망의 간섭 분석을 위한 보호비 계산에 대한 연구)

  • Suh Kyoung-Whoan;Lee Joohwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.133-142
    • /
    • 2006
  • This paper suggests an efficient method of protection ratio(PR) calculation and shows some results of point-to-point radio relay system for frequency coordination. The proposed PR can be expressed as a function of C/N of modulation scheme, noise-to-interference ratio(N/I), multiple interference allowance, fade margins of multi-Path and rain attenuation and net filter discrimination. And PR calculation is performed in view of fade margin, modulation scheme, distance, and interference for actual point-to-point radio relay frequency. According to results for 6.2 GHz, 64-QAM and 60 km at BER 10-6, fade margin and co-channel Protection ratio reveal 41.1dB and 74.9 dB, respectively The merit of presented method provides a systematic and easy calculation by means of PR correction factor related with various parameters and can apply the same concept to frequency coordination of millimeter wave radio relay system.

Analysis of Interference Protection among the Rain Radars (강우 레이더 전파간섭 분석)

  • Na, Sang-Kuen;Kim, Kun-Joong;Ji, Seg-Kuen;Kim, Young-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.553-556
    • /
    • 2012
  • The interference among the rain radars and interference in the adjacent wireless station due to the spurious signals from the rain radar were analyzed in this paper. The rain radar measures the rain intensity using S-band signal. The measured data are utilized in forecasting the rainfall. The interference among the rain radars or in the adjacent wireless stations may be caused by the high output power of rain radar. Based on the propagation analysis of S band signal and the deduced interference protection ratio of rain radar, the interference due to the rain radar are analyzed. Also, the radiation spectrum characteristics of a rain radar are deduced from the caused interference effects by the spurious signals of the rain radar.

  • PDF

Analysis of the Protection Ratio of GPS System in the Presence of RF Interference Radiated by UWB System (UWB 시스템의 간섭 신호에 대한 GPS 보호 비 분석)

  • Cho, In-Kyoung;Shim, Yong-Sup;Lee, Il-Kyoo;Cho, Hyun-Mook;Hong, Hyun-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.208-213
    • /
    • 2011
  • This paper analyzes potential interference effects of Ultra Wide Band(UWB) on Global Positioning System(GPS) which is providing safety service. For the interference analysis, positioning error method is used to determine the minimum protection distance to meet positioning error of 2.5 m below and Minimum Coupling Loss(MCL) method is used to determine the required protection ratio(I/N) from the protection distance of UWB transmitter and GPS receiver to meet positioning error of 2.5 m below. In a result, the minimum protection distance to meet positioning error of 2.5 m below was about 10 m and the protection ratio to meet positioning error 2.5 m below was -20 dB. The protection ratio proposed in this paper is the same value of the protection ratio of safety service proposed by ITU-R. The obtained protection ratio can be used for the protection standard of domestic GPS system for the safe of life service.

A Study on Calculation of Protection Ratio for Frequency Coordination in Microwave Relay System Networks (M/W 중계 시스템 망의 주파수 조정을 위한 보호비 계산에 대한 연구)

  • Suh Kyoung-Whoan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.139-147
    • /
    • 2006
  • This paper suggests an efficient method of protection ratio calculation and shows some results applicable to frequency coordination in microwave(M/W) relay system networks, and the net filter discrimination(NFD) associated with Tx spectrum mask and overall Rx filter characteristics has been examined to obtain the adjacent channel protection ratio. The protection ratio comprises several factors such as C/N of modulation scheme, noise-to-interference ratio, multiple interference allowance, fade margins of multi-path and rain attenuation, and NFD. According to computed results for 6.7 GHz, 64-QAM, and 60 km at BER $10^{-6}$, fade margin and co-channel protection ratio are 41.1 and 75.2 dB, respectively. NFD for channel bandwidth of 40 MHz reveals 28.9 dB at the first adjacent channel, which results in adjacent channel protection ratio of 46.3 dB. In addition, NFD and protection ratio for different systems with channel bandwidth 20 and 40 MHz have been investigated to be used for actual M/W networks. The proposed method provides some merits of an easy calculation, systematic extension, and applying the same concept to frequency coordination in millimeter wave relay system networks.