• Title/Summary/Keyword: Interference decomposition

Search Result 80, Processing Time 0.026 seconds

Interference Cancellation for QO-STBC with EVD (EVD기법을 이용한 QO-STBC의 간섭 제거)

  • Kim, Dong Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.46-52
    • /
    • 2016
  • Quasi-Orthogonal STBC (QO-STBC) scheme is proposed conventionally achieving approximate full rate and full diversity in more than 3 transmit antenna and open-loop environmen.. But, conventional QO-STBC has disadvantage that performance degradation by interference terms of detection matrix and high decoding complexity. Recently, this interference cancellation scheme of low decoding complexity by multiplying specific rotation matrix is proposed. We propose more general interference cancellation scheme by using EVD(Eigenvalue Decompostion).

Application of SVD on Suppression of IEEE 802.11a Interference in TH-PAM UWB Systems

  • Xu, Shaoyi;Bai, Zhiquan;Yang, Qinghai;Kwak, Kyung-Sup
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.237-239
    • /
    • 2007
  • Interference from IEEE 802.11a systems affects ultra-wideband (UWB) systems significantly. In this letter, we suggest a novel narrow-band interference (NBI) suppression technique based on the singular value decomposition (SVD) algorithm in time-hopping pulse amplitude modulation (TH-PAM) UWB systems. The SVD algorithm is used to approximate the interference which then is subtracted from the received signals. In contrast to the conventional notch filter and rake receiver, our method is more effective and the receiver complexity can be greatly reduced.

  • PDF

Matched Field Source Localization and Interference Suppression Using Mode Space Estimation (정합장 기반 표적 위치추정 시 모드공간 분석을 통한 간섭 신호 제거 기법)

  • Kim, Kyung-Seop;Seong, Woo-Jae;Pyo, Sang-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.40-46
    • /
    • 2008
  • Weak target detection and localization in the presence of loud surface ship noise is a critical problem for matched field processing (MFP) in shallow water. For stationary sources, each signal component of received signal can be separated and interference can be suppressed using eigen space analysis schemes. However, source motion, in realistic cases, causes spreading of signal energies in their subspace. In this case, eigenvalues of target and interfere signal components are mixed and hard to be separated with usual phone space eigenvector decomposition (EVD) approaches. Our technique is based on mode space and utilizes the difference in their physical characteristics of surface and submerged sources. Performing EVD for modal cross spectral density matrix, interference components in the mode amplitude subspace can be classified and eliminated. This technique is demonstrated with synthetic data, and results are discussed.

An Adaptive Adjacent Cell Interference Mitigation Method for Eigen-Beamforming Transmission in Downlink Cellular Systems (하향 링크 셀룰러 시스템의 Eigen-Beamforming 전송을 위한 적응적 인접 셀 간섭 완화 방법)

  • Chang, Jae-Won;Kim, Se-Jin;Kim, Jae-Won;Sung, Won-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.248-256
    • /
    • 2009
  • EB(Eigen-Beamforming) has widely been applied to MIMO(Multiple-Input Multiple-Output) systems to form beams which maximize the effective signal-to-interference plus noise ratio(SINR) of the receiver using the singular value decomposition(SVD) of the MIMO channel. However, the signal detection performance for the mobile station near the cell boundary is severely degraded and the transmission efficiency decreases due to the influence of the interference signal from the adjacent cells. In this paper, we propose an adaptive interference mitigation method for the EB transmission, and evaluate the reception performance. In particular, a reception strategy which adaptively utilizes optimal combining(OC) and minimum mean-squared error for Intercell spatial demultiplexing(MMSE-lSD) is proposed, and the reception performance is investigated in terms of the effective SINR and system capacity. For the average system capacity, the proposed adaptive reception demonstrates the performance enhancement compared to the conventional EB reception using the receiver beamforming vector, and up to 2 bps/Hz performance gain is achieved for mobile station located at the cell edge.

Performance Analysis of Blind Channel Estimation for Precoded Multiuser Systems

  • Xu, Zhengyuan
    • Journal of Communications and Networks
    • /
    • v.4 no.3
    • /
    • pp.189-198
    • /
    • 2002
  • Precoder has been shown to be able to provide source diversity and design flexibility. In this paper we employ precoding techniques for block transmission based on a multirate filterbank structure. To accommodate multiuser communication with variable data rates, different precoders with corresponding coefficients and up/down sampling rates are used. However, due to unknown multipath distortion, different interferences may exist in the received data, such as multiuser interference, intersymbol interference and interblock interference. To estimate channel parameters for a desired user, we employ all structured signature waveforms associated with different symbols of that user and apply subspace techniques. Therefore better performance of channel estimator can be achieved than the conventional subspace method based only on the signature of the current symbol. The delay for that user can also be jointly estimated. Channel identifiability conditions and asymptotic channel estimation error are investigated in detail. Numerical examples are provided to justify the proposed method. gest either multicode (MC) or multiple processing gain (MPG) mechanism [2], while requiring data rates to be integral multiples of some basic low-rate. In order to support variable rate transmission however, a comprehensive scheme needs to be investigated.

Dynamic Synchronous Phasor Measurement Algorithm Based on Compressed Sensing

  • Yu, Huanan;Li, Yongxin;Du, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.53-76
    • /
    • 2020
  • The synchronous phasor measurement algorithm is the core content of the phasor measurement unit. This manuscript proposes a dynamic synchronous phasor measurement algorithm based on compressed sensing theory. First, a dynamic signal model based on the Taylor series was established. The dynamic power signal was preprocessed using a least mean square error adaptive filter to eliminate interference from noise and harmonic components. A Chirplet overcomplete dictionary was then designed to realize a sparse representation. A reduction of the signal dimension was next achieved using a Gaussian observation matrix. Finally, the improved orthogonal matching pursuit algorithm was used to realize the sparse decomposition of the signal to be detected, the amplitude and phase of the original power signal were estimated according to the best matching atomic parameters, and the total vector error index was used for an error evaluation. Chroma 61511 was used for the output of various signals, the simulation results of which show that the proposed algorithm cannot only effectively filter out interference signals, it also achieves a better dynamic response performance and stability compared with a traditional DFT algorithm and the improved DFT synchronous phasor measurement algorithm, and the phasor measurement accuracy of the signal is greatly improved. In practical applications, the hardware costs of the system can be further reduced.

3-User Dirty Paper Precoding (세 명의 다중 사용자 채널에서의 더티 페이퍼 전처리 코딩)

  • Lee, Moon-Ho;Park, Ju-Yong;Shin, Tae-Chol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.2
    • /
    • pp.32-38
    • /
    • 2012
  • In this paper, we design on nonliner 3 user Dirty Paper Precoding for MIMO adjacant interference signal cancellation based on 3 GPP LTE Release 10. In this paper, in order to reduce the inter-channel interference at the transmitted side, we propose the Dirty Paper Precoding scheme for 3-user MIMO wireless systems using LQ decomposition and Gram-Schmidt algorithm based in its orthonormal basis.

Development of a Multi-Component Waterproof Type Force Sensor Devised with Column Elements Under Eccentric Load (편심하중 요소를 활용한 방수형 다분력 검력계 개발)

  • Hyochul Kim;Changhwan Shin;Seongsun Rhyu;Younjae Ham
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.3
    • /
    • pp.200-207
    • /
    • 2024
  • A multi-component force sensor has been developed to measure force and moment components in high-speed flow media for submerged models. The size of the test model is determined based on the Reynolds number of the model at the test speed and expected blockage effect. A two-component force sensor unit has been created by assembling pairs of column elements arranged symmetrically under an eccentric load. The six-component force sensor is constructed with symmetric arrangements of two-component force sensor units in a rectangular plane. The signals generated from the strain gauges attached to the surface of the elements can be converted into force signals. The performance of the waterproof six-component force sensor has been evaluated through calibration. A simplified interference decomposition procedure has been introduced to increase the accuracy of measurement.

Block Diagonal Decomposition Using Uniform Channel Decomposition for Multicell MIMO Broadcast Channels (다중 셀 MIMO 하향채널에서의 UCD를 이용한 블록 대각 분해)

  • Park, Yu-han;Park, Daeyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2331-2342
    • /
    • 2015
  • In this paper, we design non-linear transmitter and receiver using a uniform channel decomposition (UCD) to take account of inter-cell interference in multi-cell downlink systems. The designed UCD scheme brings forth the same SINR for all sub-channels in each cell. It provides great convenience to modulation/coding process and achieves the maximum diversity gain. The simulation results confirm that it exhibits a lower BER than the conventional method.

The Optimal Subchannel and Bit Allocation for Multiuser OFDM System: A Dual-Decomposition Approach (다중 사용자 OFDM 시스템의 최적 부채널 및 비트 할당: Dual-Decomposition 방법)

  • Park, Tae-Hyung;Im, Sung-Bin;Seo, Man-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.90-97
    • /
    • 2009
  • The advantages of the orthogonal frequency division multiplexing (OFDM) are high spectral efficiency, resiliency to RF interference, and lower multi-path distortion. To further utilize vast channel capacity of the multiuser OFDM, one has to find the efficient adaptive subchannel and bit allocation among users. In this paper, we propose an 0-1 integer programming model formulating the optimal subchannel and bit allocation problem of the multiuser OFDM. We employ a dual-decomposition method that provides a tight linear programming (LP) relaxation bound. Simulation results are provided to show the effectiveness of the 0-1 integer programming model. MATLAB simulation on a system employing M-ary quardarature amplitude modulation (MQAM) assuming a frequency-selective channel consisting of three independent Rayleigh multi-paths are carried with the optimal subchannel and bit allocation solution generated by 0-1 integer programming model.