• Title/Summary/Keyword: Interference Ratio Mask

Search Result 10, Processing Time 0.023 seconds

Inter Pixel Interference Reduction using Interference Ratio Mask for Holographic Data Storage (홀로그래픽 정보 저장장치에서의 간섭 비율 마스크를 이용한 인접 픽셀 간섭의 개선을 위한 연구)

  • Lee, Jae-Seong;Lim, Sung-Yong;Kim, Nak-Yeong;Kim, Do-Hyung;Park, Kyoung-Su;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.1
    • /
    • pp.42-46
    • /
    • 2011
  • Holographic Data Storage System (HDSS), one of the next generation data storage devices, is a 2-dimensional page oriented memory system using volume hologram. HDSS has many noise sources such as crosstalk, scattering and inter pixel interference, etc. The noise source is changing intensity of the light used for carrying the data signal in HDSS. The inter pixel interference results in decrease of Signal to Noise Ratio and increase of Bit Error Rate. In order to improve these problems, this paper proposes to compensate the inter pixel interference with simple interference mask.

Single-Channel Speech Separation Using the Time-Frequency Smoothed Soft Mask Filter (시간-주파수 스무딩이 적용된 소프트 마스크 필터를 이용한 단일 채널 음성 분리)

  • Lee, Yun-Kyung;Kwon, Oh-Wook
    • MALSORI
    • /
    • no.67
    • /
    • pp.195-216
    • /
    • 2008
  • This paper addresses the problem of single-channel speech separation to extract the speech signal uttered by the speaker of interest from a mixture of speech signals. We propose to apply time-frequency smoothing to the existing statistical single-channel speech separation algorithms: The soft mask and the minimum-mean-square-error (MMSE) algorithms. In the proposed method, we use the two smoothing later. One is the uniform mask filter whose filter length is uniform at the time-Sequency domain, and the other is the met-scale filter whose filter length is met-scaled at the time domain. In our speech separation experiments, the uniform mask filter improves speaker-to-interference ratio (SIR) by 2.1dB and 1dB for the soft mask algorithm and the MMSE algorithm, respectively, whereas the mel-scale filter achieves 1.1dB and 0.8dB for the same algorithms.

  • PDF

Optical Encryption based on Visual Cryptography and Interferometry (시각 암호와 간섭계를 이용한 광 암호화)

  • 이상수;서동환;김종윤;박세준;신창목;김수중;박상국
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.126-127
    • /
    • 2000
  • In this paper, we proposed an optical encryption method based in the concept of visual cryptography and interferometry. In our method a secret binary image was divided into two sub-images and they were encrypted by 'XOR' operation with a random key mask. Finally each encrypted image was changed into phase mask. By interference of these two phase masks the original image was obtained. Compared with general visual encryption method, this optical method had good signal-to-noise ratio due to no need to generate sub-pixels like visual encryption.

  • PDF

A Study on Calculation of Protection Ratio for Frequency Coordination in Microwave Relay System Networks (M/W 중계 시스템 망의 주파수 조정을 위한 보호비 계산에 대한 연구)

  • Suh, Kyoung-Whoan;Lee, Joo-Hwan
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.125-130
    • /
    • 2005
  • This paper suggests an efficient method of protection ratio calculation and shows some calculated results applicable to frequency coordination in microwave relay system networks, and the net filter discrimination (NFD) associated with Tx spectrum mask and overall Rx filter characteristics has been examined to obtain the adjacent channel protection ratio. The protection ratio comprises several factors such as C/N of modulation scheme, noise-to-interference ratio, multiple interference allowance, fade margins of multi-path and rain attenuation, and NFD. According to computed results for 6.7 GHz, 64-QAM, and 60 km at BER $10^{-6}$, fade margin and co-channel protection ratio are 41.1 and 75.2 dB, respectively, In addition, NFD for channel bandwidth of 40 MHz reveals 28.9 dB at the first adjacent channel, which results in adjacent channel protection ratio of 46.3 dB. The proposed method provides some merits of an easy calculation, systematic extension, and applying the same concept to frequency coordination in millimeter wave relay system networks.

  • PDF

A Derivation of Comprehensive Protection Ratio and Its Applications for Microwave Relay System Networks

  • Suh Kyoung-Whoan
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.2
    • /
    • pp.103-109
    • /
    • 2006
  • This paper suggests an efficient and comprehensive algorithm of the protection ratio derivation and illustrates some calculated results applicable to the initial planning of frequency coordination in the fixed wireless access networks. The net filter discrimination associated with Tx spectrum mask and overall Rx filter characteristic has been also examined to show the effect of the adjacent channel interference. The calculations for co-channel and adjacent channel protection ratios are performed for the current microwave frequency band of 6.7 GHz including Tx spectrum mask and Rx filter response. According to results, fade margin and co-channel protection ratio reveal 41.4 and 75.2 dB, respectively, for 64-QAM and 60 km at BER $10^{-6}$. It is shown that the net filter discrimination with 40 MHz channel bandwidth provides 28.9 dB at the first adjacent channel, which yields 46.3 dB of adjacent channel protection ratio. In addition, the protection ratio of 38 GHz radio relay system is also reviewed for millimeter wave band applications. The proposed method gives some advantages of an easy and systematic extension for protection ratio calculation and is also applied to frequency coordination in fixed millimeter wave networks.

A Protection Ratio with Composite Fade Margin for Detailed Frequency Coordination in Microwave Relay System Network

  • Suh, Kyoung-Whoan
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.2
    • /
    • pp.83-90
    • /
    • 2007
  • In this paper, the formulation of the protection ratio based upon a composite fade margin and availability is newly presented for the detailed planning of frequency coordination in the microwave relay system network, and computed results for co-channel and adjacent channel protection ratios are illustrated over an actual system with 6.2 GHz. It is shown that the protection ratio to assure a quality of service can be expressed in terms of the composite fade margin, noise-to-interference ratio, net filter discrimination, and system parameters. In addition, the net filter discrimination, depending upon the transmitter spectrum mask and the overall receiver filter characteristic, has been examined to investigate the effect of the adjacent channel protection ratio caused by the adjacent channel interference. Regarding simulated results for 6.2 GHz, 60 km, 64-QAM, and N/I=6 dB at the bit error rate of $10^{-6}$, composite fade margin and co-channel protection ratio yield 25.14 and 50.3 dB, respectively. Also, the net filter discrimination of 26.5 dB and the adjacent channel protection ratio of 23.8 dB are obtained at the first adjacent channel of 30 MHz. The proposed method provides some merits in view of a comprehensive and practical application with more detailed and various system parameters needed to access the criteria for making the proper frequency coordination.

A Study on Calculation of NFD and Protection Ratio of Fixed Radio Relay System for Analyzing Adjacent Channel Interference (인접 채널 간섭 분석을 위한 고정 무선 중계 시스템의 NFD 및 보호비 계산에 대한 연구)

  • Suh Kyoung-Whoan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.11 s.102
    • /
    • pp.1138-1146
    • /
    • 2005
  • This paper makes a study of a formulation of net filter discrimination(NFD) and its computation for analyzing adjacent channel interference and suggests a systematic algorithm for calculating protection ratios of co-channel and adjacent channel applicable to frequency coordination in the fixed radio relay networks. It is shown that adjacent channel protection ratio can be derived from two factors: One is NFD depending upon receiver filter characteristic as well as transmitter spectrum mask and the other is co-channel protection ratio given by a function of fade margin, modulation scheme, and allowable interference. Actually to show the computing procedure from transmitter spectrum mask and receiver filter characteristic, NFD has been obtained for channel bandwidth of 29.65 and 40 MHz at 6.2 and 6.7 GHz band, respectively. According to the results, NFDs at the first adjacent channel of 29.65 and 40 MHz provide 27.4 and 28.9 dB, respectively. From these data, adjacent channel protection ratios corresponding to each channel bandwidth yield 47.5 and 46.3 dB for a given 64-QAM and 60 km. The proposed method gives some merits of an easy calculation, systematic extension, and applying the same concept to frequency coordination in millimeter radio relay networks.

A Spectrum Sharing Model for Compatibility between IMT-Advanced and Digital Broadcasting

  • Hassan, Walid A.;Rahman, Tharek Abd
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2073-2085
    • /
    • 2012
  • Recently, the International Telecommunication Union allocated the 470-862 MHz band to the digital broadcasting (DB) service. Moreover, the 790-862 MHz sub-band will be allocated to the next-generation mobile system, known as the International Mobile Telecommunication - Advanced (IMT-A), and to the DB on a co-primary basis in the year 2015. Currently, two candidate technologies are available to represent the IMT-A system; the Mobile WiMAX and Long Term Evolution - Advanced (LTE-A). One of the main criteria of the IMT-A candidate is to not cause additional interference to the primary service (i.e., DB). In this paper, we address the spectrum sharing issue between the IMT-A candidates and the DB service. More precisely, we investigate the interference effect between the DB service and the mobile network, which could be either LTE-A or WiMAX. Our study proposes a spectrum sharing model to take into account the impact of interference and evaluates the spectrum sharing requirements such as frequency separation and separation distance. This model considers three spectrum sharing scenarios: co-channel, zero guard band, and adjacent channel. A statistical analysis is performed, by considering the interferer spectrum emission mask and victim receiver blocking techniques. The interference-to-noise ratio is used as an essential spectrum sharing criterion between the systems. The model considers the random distribution of the users, antenna heights, and the bandwidth effect as well as the deployment environment in order to achieve spectrum sharing. The results show that LTE-A is preferable to WiMAX in terms of having less interference impact on DB; this can eventually allow the operation of both services without performance degradation and thus will lead to efficient utilization of the radio spectrum.

Single-Channel Speech Separation Using Phase Model-Based Soft Mask (위상 모델 기반의 소프트 마스크를 이용한 단일 채널 음성분리)

  • Lee, Yun-Kyung;Kwon, Oh-Wook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.141-147
    • /
    • 2010
  • In this paper, we propose a new speech separation algorithm to extract and enhance the target speech signals from mixed speech signals by utilizing both magnitude and phase information. Since the previous statistical modeling algorithms assume that the log power spectrum values of the mixed speech signals are independent in the temporal and frequency domain, discontinuities occur in the resultant separated speech signals. To reduce the discontinuities, we apply a smoothing filter in the time-frequency domain. To further improve speech separation performance, we propose a statistical model based on both magnitude and phase information of speech signals. Experimental results show that the proposed algorithm improve signal-to-interference ratio (SIR) by 1.5 dB compared with the previous magnitude-only algorithms.

A Study on Calculation of Protection Ratio for Frequency Coordination in Microwave Relay System Networks (M/W 중계 시스템 망의 주파수 조정을 위한 보호비 계산에 대한 연구)

  • Suh Kyoung-Whoan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.139-147
    • /
    • 2006
  • This paper suggests an efficient method of protection ratio calculation and shows some results applicable to frequency coordination in microwave(M/W) relay system networks, and the net filter discrimination(NFD) associated with Tx spectrum mask and overall Rx filter characteristics has been examined to obtain the adjacent channel protection ratio. The protection ratio comprises several factors such as C/N of modulation scheme, noise-to-interference ratio, multiple interference allowance, fade margins of multi-path and rain attenuation, and NFD. According to computed results for 6.7 GHz, 64-QAM, and 60 km at BER $10^{-6}$, fade margin and co-channel protection ratio are 41.1 and 75.2 dB, respectively. NFD for channel bandwidth of 40 MHz reveals 28.9 dB at the first adjacent channel, which results in adjacent channel protection ratio of 46.3 dB. In addition, NFD and protection ratio for different systems with channel bandwidth 20 and 40 MHz have been investigated to be used for actual M/W networks. The proposed method provides some merits of an easy calculation, systematic extension, and applying the same concept to frequency coordination in millimeter wave relay system networks.