• Title/Summary/Keyword: Interference Mitigation

Search Result 165, Processing Time 0.021 seconds

Dynamic Access and Power Control Scheme for Interference Mitigation in Femtocell Networks

  • Ahmed, Mujeeb;Yoon, Sung-Guk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4331-4346
    • /
    • 2015
  • The femtocell network, which is designed for low power transmission and consists of consumer installed small base stations, coexists with macrocells to exploit spatial reuse gain. For its realization, cross-tier interference mitigation is an important issue. To solve this problem, we propose a joint access and power control scheme that requires limited information exchange between the femto and macro networks. Our objective is to maximize the network throughput while satisfying each user's quality of service (QoS) requirement. To accomplish this, we first introduce two distributed interference detection schemes, i.e., the femto base station and macro user equipment based schemes. Then, the proposed scheme dynamically adjusts the transmission power and makes a decision on the access mode of each femto base station. Through extensive simulations, we show that the proposed scheme outperforms earlier works in terms of the throughput and outage probability.

Performance of Interference Mitigation with Different Wavelets in Global Positioning Systems

  • Seo, Bo-Seok;Park, Kwi-Woo;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.165-173
    • /
    • 2019
  • In this paper, we apply a discrete wavelet packet transform (DWPT) to reduce the influence of interference in global positioning system (GPS) signals and compare the interference mitigation performance of various wavelets. By applying DWPT to the received signal, we can gradually divide the received signal band into low-pass and high-pass bands. After calculating the average power for the separate bands, we can determine whether there is interference by comparing the value with the given threshold. For a band that includes interference, we can reconstruct the whole band signal using inverse DWPT (IDWPT) after applying a nulling method that sets all of the wavelet coefficients to 0. The reconstructed signals are correlated with the pseudorandom noise (PRN) codes to acquire GPS signals. The performance evaluation is based on the number of satellite signals whose peak ratio (defined as the ratio of the first and second correlation peak values in the acquisition stage) exceeds the threshold. In this paper, we compare and evaluate the performance of 6 wavelets including Haar, Daubechies, Symlets, Coiflets, Biorthogonal Splines, and Discrete Meyer.

Clustering Based Adaptive Power Control for Interference Mitigation in Two-Tier Femtocell Networks

  • Wang, Hong;Song, Rongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1424-1441
    • /
    • 2014
  • Two-tier femtocell networks, consisting of a conventional cellular network underlaid with femtocell hotspots, play an important role in the indoor coverage and capacity of cellular networks. However, the cross- and co-tier interference will cause an unacceptable quality of service (QoS) for users with universal frequency reuse. In this paper, we propose a novel downlink interference mitigation strategy for spectrum-shared two-tier femtocell networks. The proposed solution is composed of three parts. The first is femtocells clustering, which maximizes the distance between femtocells using the same slot resource to mitigate co-tier interference. The second is to assign macrocell users (MUEs) to clusters by max-min criterion, by which each MUE can avoid using the same resource as the nearest femtocell. The third is a novel adaptive power control scheme with femtocells downlink transmit power adjusted adaptively based on the signal to interference plus noise ratio (SINR) level of neighboring users. Simulation results show that the proposed scheme can effectively increase the successful transmission ratio and ergodic capacity of femtocells, while guaranteeing QoS of the macrocell.

Effect of Interference Mitigation Technique and Performance Analysis for Small Cell in Homogeneous Networks (동종네트워크 상에서 셀 소형화 간섭 완화 기법 및 성능 분석)

  • Jang, Ye-Ok;Cho, Eun-Hyung;Hong, Een-Kee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.10
    • /
    • pp.937-945
    • /
    • 2014
  • As various services requiring high data rate are supported by introducing LTE/LTE-adv., mobile traffic increases rapidly. To cope with the continuous growth of traffic demand, small cell technology is considered as one of the most promising one. Small cell can increase system capacity by increasing the number of base stations with reduced cell radius. In this paper, we analyze the effect of cell densification with small cells in terms of SINR and average UE throughput considering cell split and the number of UE per unit area. As the cell becomes smaller, SINR degradation arises from high ICI(Inter Cell Interference) and we evaluate the effect of interference mitigation scheme in small cell environment where the proper interference mitigation technique is applied.

Interference Mitigation Receiver for Control Channel Region in LTE-A (LTE-A 제어 채널 영역에 대한 간섭 제어 수신기)

  • Hwnag, Jin-Yup;Jung, Man Young;Lee, Sang-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.903-910
    • /
    • 2016
  • This paper investigates an advanced receiver for interference mitigation of downlink control channel in the 3GPP Rel-13 standard. There are several features for downlink throughput performance improvement with inter-cell interference management such as network coordination and advanced receivers during Rel-10~Rel-12. These features can be operated always under the assumption that UE perfectly decodes control channels (PCFICH and PDCCH) of serving cell. However, the performance of control channels could be deteriorated in the cell edge region due to inter-cell interference. In this paper, we introduce the advanced receivers and analyze performance for control channel interference mitigation (CCIM) based on 3GPP Rel-13 standard. Additionally, we propose UE behavior depending on network condition.

A Study on the Analysis of UWB Interference to WiMAX and Mitigation Method of Transmit Power Control (초광대역 시스템에 의한 WiMAX로의 간섭 및 송신 전력 제어 간섭 저감 방법 해석 연구)

  • Yoon, Young-Keun;Ju, Sang-Ho;Choi, Ik-Guen
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.9
    • /
    • pp.1077-1082
    • /
    • 2007
  • This paper presents the analysis of the potential ultra-wideband(UWB) interference to WiMAX at 3.5 GHz bands and the mitigation method using transmit power control(TPC) of UWB system. UWB interference effect is evaluated with WiMax's outage probability over UWB density when multiple UWB systems and single WiMAX receiver distribute in unit area of 1$km^2$, When UWB distribution density is 20$devices/km^2$ and the dynamic range of TPC is 30 dB, UWB interference effect with TPC is decreased by 42 % rather than that without mitigation scheme. Finally, we describe that the proposed TPC is an effective method to mitigate UWB interference to WiMAX.

Cooperative Interference Mitigation Using Fractional Frequency Reuse and Intercell Spatial Demultiplexing

  • Chang, Jae-Won;Heo, Jun;Sung, Won-Jin
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.127-136
    • /
    • 2008
  • For mobile wireless systems with full frequency reuse, co-channel interference near the cell coverage boundaries has a significant impact on the signal reception performance. This paper addresses an approach to efficiently mitigate the effect of downlink co-channel interference when multi-antenna terminals are used in cellular environments, by proposing a signal detection strategy combined with a system-level coordination for dynamic frequency reuse. We demonstrate the utilization of multi-antennas to perform spatial demultiplexing of both the desired signal and interfering signals from adjacent cells results in significant improvement of spectral efficiency compared to the maximal ratio combining (MRC) performance, especially when an appropriate frequency reuse based on the traffic loading condition is coordinated among cells. Both analytic expressions for the capacity and experimental results using the adaptive modulation and coding (AMC) are used to confirm the performance gain. The robustness of the proposed scheme against varying operational conditions such as the channel estimation error and shadowing effects are also verified by simulation results.

ANALYSIS OF SPATIAL AND TEMPORAL ADAPTIVE PROCESSING FOR GNSS INTERFERENCE MITIGATION

  • Chang, Chung-Liang;Juang, Jyh-Ching
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.143-148
    • /
    • 2006
  • The goal of this paper is to analyze, through simulations and experiments, GNSS interference mitigation performance under various types of antenna structures against wideband and narrowband interferences using spatial-temporal adaptive signal processing (STAP) techniques. The STAP approach, which combines spatial and temporal processing, is a viable means of GNSS array signal processing that enhancing the desired signal quality and providing protection against interference. In this paper, we consider four types of 3D antenna array structure - Uniform Linear Array (ULA), Uniform Rectangular Array (URA), Uniform Circular Array (UCA), and the Single-Ring Cylindrical Array (SRCA) under an interference environment. Analytical evaluation and simulations are performed to investigate the system performance. This is followed by simulation GPS orbits in interfered environment are used to evaluate the STAP performance. Furthermore, experiments using a 2x2 URA hardware simulator data show that with the removal of wideband and narrowband interference through the STAP techniques, the signal tracking performance can be enhanced.

  • PDF

Interference-limited Resource Allocation Algorithm in Cognitive Heterogeneous Networks

  • Zhuang, Ling;Yin, Yaohu;Guan, Juan;Ma, Xiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1471-1488
    • /
    • 2018
  • Interference mitigation is a significant issue in the cognitive heterogeneous networks, this paper studied how to reduce the interference to macrocell users (MU) and improve system throughput. Establish the interference model with imperfect spectrum sensing by analyzing the source of interference complexity. Based on the user topology, the optimize problem was built to maximize the downlink throughput under given interference constraint and the total power constraint. We decompose the resource allocation problem into subcarrier allocation and power allocation. In the subcarrier assignment step, the allocated number of subcarriers satisfies the requirement of the femtocell users (FU).Then, we designed the power allocation algorithm based on the Lagrange multiplier method and the improved water filling method. Simulation results and performance analyses show that the proposed algorithm causes less interference to MU than the algorithm without considering imperfect spectrum sensing, and the system achieves better throughput performance.

Dynamic Opportunistic Interference Alignment for Random-Access Small-Cell Networks (랜덤 엑세스 스몰셀 무선망에서의 실시간 기회적 간섭정렬 기법 연구)

  • Jeon, Sang-Woon;Shin, Won-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.11
    • /
    • pp.675-681
    • /
    • 2014
  • As the recently soaring wireless traffic, small-cell techniques have been actively studied in order to support such a wireless demand for cellular wireless networks. This paper studies interference mitigation methods for random-access small-cell networks. Although inter-cell interference between small random-access cells is one of the main factors to degrade overall performance, most of the previous works focused on interference mitigation between users in each cell. To address such limitation, dynamic opportunistic interference alignment is proposed exploiting statistical characteristics of random-access. It is demonstrated by simulation that the proposed scheme outperforms the previous approach as the number of cells or the number of users in each cell increases.