• Title/Summary/Keyword: Interference Estimation

Search Result 445, Processing Time 0.018 seconds

Interference Localization for Cellular OFDMA Systems (셀룰러 OFDMA 시스템을 위한 간섭의 집중화)

  • Rim, Min-Joong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.3 s.357
    • /
    • pp.51-60
    • /
    • 2007
  • Cellular OFDMA systems may suffer from various amounts of inter-cell interferences according to subcarriers. If it is possible to estimate the interference level of each subcarrier, the performance can be improved by adjusting the magnitude of channel decoder input signals inversely proportional to the interference amounts. While conventional cellular systems prefer to use interference averaging techniques for mitigating inter-cell interferences, this paper shows that localizing inter-cell interferences to the reduced number of subcarriers can significantly improve the system performance assuming thatinterference estimation can be employed. If interference estimation is not used, it is more favorable to use interference averaging techniques to avoid excessive interference levels to certain subcarriers. On the other hand, if interference estimation can be employed, interference localization is more beneficial than interference averaging.

Cognitive Relay Networks with Underlay Spectrum Sharing and Channel Estimation Error: Interference Probability and BER Analysis

  • Ho-Van, Khuong
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.301-304
    • /
    • 2014
  • This paper proposes accurate interference probability and bit error rate formulas for cognitive relay networks with underlay spectrum sharing and channel estimation error (CEE). Numerous results reveal that the CEE not only degrades the performance of secondary systems (SSs) but also increases interference power caused by SSs to primary systems (PSs), eventually unfavorable to both systems. A solution to further protect PSs from this effect through reducing the power of secondary transmitters is investigated and analyzed.

Receiver Techniques for Ultra-wide-band Multiuser Systems over Fading Multipath Channels

  • Zhou, Xiaobo;Wang, Xiaodong
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.167-173
    • /
    • 2003
  • We treat the problem of channel estimation and interference cancellation in multiuser ultra-wide-band (UWB) communication systems over multipath fading channels. The UWB system under consideration employs a random time-hopping impulse radio format. We develop a channel estimation method based on linear weighted algorithm. An iterative channel estimation and interference cancellation scheme is proposed to successively improve the receiver performance. We also consider systems employing multiple transmit and/or receive antennas. For systems with multiple receive antennas, we develop a diversity receiver for the wellseparated antennas. For systems with multiple transmit antennas, we propose to make use of Alamouti’s space-time transmission scheme, and develop the corresponding channel estimation and interference cancellation receiver techniques. Simulation results are provided to demonstrate the performance of various UWB receiver techniques developed in this paper.

A New In-band Full-duplex SIC Scheme Using a Phase Rotator

  • Lee, Haesoon;Kim, Dongkyu;Kim, Jinmin;Hong, Daesik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.4
    • /
    • pp.240-245
    • /
    • 2014
  • How well the self-interference cancellation (SIC) technique performs is a primary issue in realizing an in-band full-duplex (FD) wireless communication system. One factor affecting its performance is channel estimation error on the self-interference channel. We propose a new analog SIC scheme which is robust to channel estimation error. It uses phase rotators in the radio frequency (RF) chain. We also derive closed-form equations for the residual self-interference of the proposed and the conventional schemes. The analytical and numerical results show that the residual self-interference under the proposed SIC scheme is less than that using the conventional scheme, even though channel estimation error is present.

SLNR-based Precoder Design in Multiuser Interference Channel with Channel Estimation Error

  • Seo, Bangwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.40-52
    • /
    • 2020
  • In this paper, we consider a precoder design problem for multiuser interference channel. Most of the conventional schemes for precoder design utilize a signal-to-interference-plus-noise ratio (SINR) as a cost function. However, since the SINR metric of a desired transmitter-receiver pair is a function of precoding vectors of all transmitters in the multiuser interference channel, an analytic closed-form solution is not available for the precoding vector of a desired transmitter that maximizes the SINR metric. To eliminate coupling between the precoding vectors of all transmitters and to find a closed-form solution for the precoding vector of the desired transmitter, we use a signal-to-leakage-plus-noise ratio (SLNR) instead as a cost function because the SLNR at a transmitter is a function of the precoding vector of the desired transmitter only. In addition, channel estimation errors for undesired links are considered when designing the precoding vector because they are inevitable in a multiuser interference channel. In this case, we propose a design scheme for the precoding vector that is robust to the channel estimation error. In the proposed scheme, the precoding vector is designed to maximize the worst-case SLNR. Through computer simulation, we show that the proposed scheme has better performance than the conventional scheme in terms of SLNR, SINR, and sum rate of all users.

Performance Evaluation of Interference Alignment Based on Analog CSI Feedback in Continuously-Varying Interference Channel (연속적으로 변하는 간섭채널에서 아날로그 피드백을 이용한 간섭정렬의 성능 평가)

  • Song, Kyoung-Young;Lim, Dae-Woon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.1
    • /
    • pp.65-67
    • /
    • 2014
  • In this letter, the performance of the interference channel with continuously varying channel is evaluated by using interference alignment based on practical channel estimation and channel state information(CSI) feedback and ideal Doppler frequency estimation. In this paper, performance evaluation is performed in terms of sum rate for 3-user interference channel. And also, sum rate is measured according to frequency of channel estimation relating with the calculation complexity. Simulation results show that the proposed scheme outperforms the conventional one which assumes that the channel is constant in a frame in some circumstances.

Effect of Mutual Interference and Channel Estimation Error on Outage Performance of Reactive Relay Selection in Unlicensed Systems

  • Ho-Van, Khuong
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.362-369
    • /
    • 2015
  • This study addresses the effects of channel estimation error and mutual interference between licensed and unlicensed systems on outage performance of reactive relay selection in unlicensed systems over independent non-identical (i.n.i) Rayleigh fading channels and under both the maximum transmit power constraint and primary outage constraint. Toward this end, power allocation for unlicensed users is first recommended to satisfy both constraints and account for channel estimation error and mutual interference. Then, we derive an exact closed-form outage probability representation for unlicensed systems to quickly evaluate this effect in key operation parameters. Various results corroborate the derived expressions and provide useful insights into system performance.

Linear versus Non-linear Interference Cancellation

  • Buehrer, R.Michael;Nicoloso, Steven P.;Gollamudi, Sridhar
    • Journal of Communications and Networks
    • /
    • v.1 no.2
    • /
    • pp.118-133
    • /
    • 1999
  • In this paper we compare linear and non-linear inter-ference cancellation for systems employing code division multi-ple access (CDMA) techniques. Specifically, we examine linear and non-linear parallel interference cancellation(also called multi-stage cancellation) in relationship to other multiuser detection al-gorithms. We show the explicit relationship between parallel inter-ference cancellation and the decorrelator (or direct matrix inver-sion). This comparison gives insight into the performance of paral-lel interference cancellation (PIC) and leads to vetter approaches. We also show that non-linear PIC approaches with explicit chan-nel setimation can provide performance improvement over linear PIC, especially when using soft non-linear symbol estimates. The application of interference cancellation to non-linear modulation techniques is also presented along with a discussion on minimum mean-squared error(MMSE) symbol estimation techniques. These are shown to further improve the performance of parallel cancella-tion.

  • PDF

A Study on Mobile Target Estimation Resolution using Effects of Model Errors and Sensitivity Analysis

  • Lee, Kwan Hyeong
    • International journal of advanced smart convergence
    • /
    • v.2 no.1
    • /
    • pp.21-23
    • /
    • 2013
  • The antenna pattern in this case has a main beam pointed in the desired signal direction, and has a null in the direction of the interference.The conventional antenna pattern concepts of beam width, side lobes, and main beams are not used, as the antenna weights are designed to achieve a set performance criterion such as maximization of the output SNR.A new direction of arrival estimation method using effects of model errors and sensitivity analysis is proposed. Two subspaces are used to form a signal space whose phase shift between the reference signal and its effects of model error signal. Through simulation, the performance showed that the proposed method leads to increased resolution and improved accuracy of DOA estimation relative to those achieved with existing method. Since a desired signal is obtained after interference rejection through correction effects of model error, the effect of channel interference on the estimation is significantly reduced.

Individual Channel Estimation Based on Blind Interference Cancellation for Two-Way MIMO Relay Networks

  • He, Xianwen;Dou, Gaoqi;Gao, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3589-3605
    • /
    • 2018
  • In this paper, we investigate an individual channel estimation problem for multiple-input multiple-output (MIMO) two-way amplify-and-forward (AF) relay networks. To avoid self-interference during the estimation of the individual MIMO channels, a novel blind interference cancellation (BIC) approach is proposed based on an orthogonal preceding framework, where a pair of orthogonal precoding matrices is utilized at the source nodes. By designing an optimal decoding scheme, we propose to decompose the bidirectional transmission into a pair of unidirectional transmissions. Unlike most existing approaches, we make the practical assumption that the nonreciprocal MIMO channel and the mutual interference of multiple antennas are both taken into consideration. Under the precoding framework, we employ an orthogonal superimposed training strategy to obtain the individual MIMO channels. However, the AF strategy causes the noise at the terminal to be the sum of the local noise and the relay-propagated noise. To remove the relay-propagated noise during the estimation of the second-hop channel, a partial noise-nulling method is designed. We also derive a closed-form expression for the total mean square error (MSE) of the MIMO channel from which we compute the optimal power allocation. The simulation results demonstrate that the analytical and simulated curves match fully.