• 제목/요약/키워드: Interfacial stress

검색결과 378건 처리시간 0.021초

Improved Modeling of the Effects of Thermal Residual Stresses on Single Fiber Pull-Out Problem

  • Chai, Young-Suk;Park, Byung-Sun;Yang, Kyung-Jun
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.823-830
    • /
    • 2001
  • The single fiber pull-out technique has been commonly used to characterize the mechanical behavior of fiber/matrix interface in fiber reinforced composite materials. In this study, an improved analysis considering the effect of thermal residual stresses in both radial and axial directions is developed for the single fiber pull-out test. It is found to have the pronounced effects on the stress transfer properties across the interface and the interfacial debonding behavior.

  • PDF

Improved analytical method for adhesive stresses in plated beam: Effect of shear deformation

  • Guenaneche, B.;Benyoucef, S.;Tounsi, A.;Adda Bedia, E.A.
    • Advances in concrete construction
    • /
    • 제7권3호
    • /
    • pp.151-166
    • /
    • 2019
  • This paper introduces a new efficient analytical method, based on shear deformations obtained with 2D elasticity theory approach, to perform an explicit closed-form solution for calculation the interfacial shear and normal stresses in plated RC beam. The materials of plate, necessary for the reinforcement of the beam, are in general made with fiber reinforced polymers (Carbon or Glass) or steel. The experimental tests showed that at the ends of the plate, high shear and normal stresses are developed, consequently a debonding phenomenon at this position produce a sudden failure of the soffit plate. The interfacial stresses play a significant role in understanding this premature debonding failure of such repaired structures. In order to efficiently model the calculation of the interfacial stresses we have integrated the effect of shear deformations using the equilibrium equations of the elasticity. The approach of this method includes stress-strain and strain-displacement relationships for the adhesive and adherends. The use of the stresses continuity conditions at interfaces between the adhesive and adherents, results pair of second-order and fourth-order coupled ordinary differential equations. The analytical solution for this coupled differential equations give new explicit closed-form solution including shear deformations effects. This new solution is indented for applications of all plated beam. Finally, numerical results obtained with this method are in agreement of the existing solutions and the experimental results.

Stress analysis of a two-phase composite having a negative-stiffness inclusion in two dimensions

  • Wang, Yun-Che;Ko, Chi-Ching
    • Interaction and multiscale mechanics
    • /
    • 제2권3호
    • /
    • pp.321-332
    • /
    • 2009
  • Recent development in composites containing phase-transforming particles, such as vanadium dioxide or barium titanate, reveals the overall stiffness and viscoelastic damping of the composites may be unbounded (Lakes et al. 2001, Jaglinski et al. 2007). Negative stiffness is induced from phase transformation predicted by the Landau phase transformation theory. Although this unbounded phenomenon is theoretically supported with the composite homogenization theory, detailed stress analyses of the composites are still lacking. In this work, we analyze the stress distribution of the Hashin-Shtrikman (HS) composite and its two-dimensional variant, namely a circular inclusion in a square plate, under the assumption that the Young's modulus of the inclusion is negative. Assumption of negative stiffness is a priori in the present analysis. For stress analysis, a closed form solution for the HS model and finite element solutions for the 2D composite are presented. A static loading condition is adopted to estimate the effective modulus of the composites by the ratio of stress to average strain on the loading edges. It is found that the interfacial stresses between the circular inclusion and matrix increase dramatically when the negative stiffness is so tuned that overall stiffness is unbounded. Furthermore, it is found that stress distributions in the inclusion are not uniform, contrary to Eshelby's theorem, which states, for two-phase, infinite composites, the inclusion's stress distribution is uniform when the shape of the inclusion has higher symmetry than an ellipse. The stability of the composites is discussed from the viewpoint of deterioration of perfect interface conditions due to excessive interfacial stresses.

Mode I and Mode II Analyses of a Crack Normal to the Graded Interlayer in Bonded Materials

  • Park, Hyung-Jip
    • Journal of Mechanical Science and Technology
    • /
    • 제15권10호
    • /
    • pp.1386-1397
    • /
    • 2001
  • In this paper, the plane elasticity equations are used to investigate the in-plane normal (mode I) and shear (mode II) behavior of a crack perpendicular to and terminating at the interface in bonded media with a graded interfacial zone. The interfacial Bone is treated as a nonhomogeneous interlayer with the continuously varying elastic modulus between the two dissimilar, homogeneous semi-infinite constituents. For each of the individual loading modes, based on the Fourier integral transform technique, a singular integral equation with a Cauchy kernel is derived in a separate but parallel manner. In the numerical results, the values of corresponding modes of stress intensity factors are illustrated for various combinations of material and geometric parameters of the bonded media in conjunction with the effect of the material nonhomogeneity within the graded interfacial zone.

  • PDF

Micromechanical 시험법과 전기저항 측정을 이용한 탄소섬유 강화 Epoxy-AT-PEI복합재료의 비파괴적 손상 감지능 및 계면물성 평가 (Interfacial Evaluation and Nondestructive Damage Sensing of Carbon Fiber Reinforced Epoxy-AT-PEI Composites using Micromechanical Test and Electrical Resistance Measurement)

  • Joung-Man Park;Dae-Sik Kim;Jin-Woo Kong;Minyoung Kim;Wonho Kim
    • Composites Research
    • /
    • 제16권2호
    • /
    • pp.62-67
    • /
    • 2003
  • Microdroplet 시험법과 전기저항 측정을 이용하여 탄소섬유강화 epoxy-AT-PEI 복합재료의 손상 감지능 및 계면물성평가에 대한 연구를 수행하였다. AT-PEI 함량이 증가함에 따라 기지재료의 파괴인성은 증가하였으며, 이로 인한 에너지흡수 메커니즘에 의해서 계면전단강도 역시 증가하였다. Microdroulet 시험에서 순수 에폭시는 취성파괴 현상을 그리고 15 phr AT-PEI의 경우에는 파괴인성의 증가로 인해 연성 파단 현상을 관찰할 수 있었다. 경화 후에 열 수축에 의한 전기저항 변화는 AT-PEI 함량 증가에 따라 증가하였으며. 가변하중 하에서 순수 에폭시에 함침된 탄소섬유의 같은 응력까지의 도달시간과 기울기는 15 phr AT-PEI의 경우보다 더 빠르고 높았다. 경화과정과 가역적인 하중 하에서의 전기저항 측정으로부터 얻은 결과는 기지재료의 파괴인성과 잘 일치하였다.

탄소섬유/에폭시의 반구형 미소접합 시험편에 대한 계면강도 평가 (Interfacial shear strength test by a hemi-spherical microbond specimen of carbon fiber and epoxy resin)

  • 박주언;구자국;강수근;최낙삼
    • Composites Research
    • /
    • 제21권4호
    • /
    • pp.15-21
    • /
    • 2008
  • 단일 탄소섬유에 부착된 반구형 미소본드 시험편을 제사하여 에폭시수지와 난소섬유사이의 계면전단강도를 평가하였다. 반구형 미소시험편의 경우, 드랍레트 미소접합시험편 및 역반구형 미소접합시험편과 비교하여 계면강도측정값들이 높은 회귀계수 및 삭은 편차를 보여주었다. 이는반구형 시험편의 메니스커스 부분이 다른 미소시험편보다 작으며 핀홀 부하장치의 선단과 접촉하고 있는 수지부분에서 응력집중이 감소했기 때인 것으로 사료된다. 이들 시험에 대한 유한요소해석결과, 반구형시험편에서는 수지/섬유의 계면부를 따라 전단응력분포가 응력모드의 전환이 없이 안정하였다. 또한 이들 계면강도 측정데이터는 미소 바이스의 선단과 핀홀 판의 선단과 같은 부하장치의 종류에 따라 달라졌음을 알았다.

Numerical analysis of interface crack problem in composite plates jointed with composite patch

  • Cetisli, Fatih;Kaman, Mete O.
    • Steel and Composite Structures
    • /
    • 제16권2호
    • /
    • pp.203-220
    • /
    • 2014
  • Stress intensity factors are numerically investigated for interfacial edge crack between two dissimilar composite plates jointed with single side composite patch. Variation of stress intensity factor under Mode I loading condition is examined for different material models and fiber orientation angles of composite plates and patch. ANSYS 12.1 finite element analysis software is used to obtain displacements of crack surfaces in the numerical solution and repaired plates are modeled in three dimensions. Obtained results are presented in the form of graphs. It is found that fiber orientation angle of composites is an effective parameter on interfacial stress intensity factor.

CLAD강의 DEBONDING 현상에 대한 연구(1) -열처리에 의한 clad강 계면의 강도 약화- (A Study on the Debonding Phenomena of Clad Steel(1) -Deterioration of Interfacial Strength in Clad Steel by Thermal Treatment-)

  • 윤중근;김희진
    • Journal of Welding and Joining
    • /
    • 제5권3호
    • /
    • pp.28-37
    • /
    • 1987
  • To clarify the debonding phenomena of clad steel, the effect of thermal treatment (temperature, holding time) on the interfacial strength of clad steel was preliminarily investigated. From this study, it was confirmed that the interfacial strength of clad steel was deteriorated by thermal treatment and the amount of strength deteriorated, depending on the condition of thermal treatment, could be evaluated by the following equation. ${\sigma}_{ HT}/{\sigma}_{i}/=A_{0}-A\;exp(-Q/RT)log(t/t_{0})$ This equation implies that temperature has a far strong effect on strength deterioration than tiem. The deterioration of interfacial strength of clad steel after thermal treatment may be derived from the thermal stress caused by the difference in thermal expansion coefficient between component materials and microstructural change along the interface.

  • PDF

Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis

  • Rabia, Benferhat;Daouadji, Tahar Hassaine;Abderezak, Rabahi
    • Advances in materials Research
    • /
    • 제9권4호
    • /
    • pp.265-287
    • /
    • 2020
  • A theoretical method to predict the interfacial stresses in the adhesive layer of reinforced concrete beams strengthened with porous FRP plate is presented in this paper. The effect due to porosity is incorporated utilizing a new modified rule of mixture covering the porosity phases. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends. Remarkable effect of the porosity has been noted in the results. Indeed, the resulting interfacial stresses concentrations are considerably smaller than those obtained by other models which neglect the porosity effect. It was found that the interfacial stresses are highly concentrated at the end of the FRP plate, the minimization of the latter can be achieved by using porous FRP plate in particular at the end. It is also shown that the interfacial stresses of the RC beam increase with volume fraction of fibers, but decrease with the thickness of the adhesive layer.

Analytical analysis of the interfacial shear stress in RC beams strengthened with prestressed exponentially-varying properties plate

  • Rabia, Benferhat;Abderezak, Rabahi;Daouadji, Tahar Hassaine;Abbes, Boussad;Belkacem, Adim;Abbes, Fazilay
    • Advances in materials Research
    • /
    • 제7권1호
    • /
    • pp.29-44
    • /
    • 2018
  • In this paper, a closed-form rigorous solution for interfacial shear stress in simply supported beams strengthened with bonded prestressed E-FGM plates and subjected to an arbitrarily positioned single point load, or two symmetric point loads is developed using linear elastic theory. This improved solution is intended for application to beams made of all kinds of materials bonded with a thin plate, while all existing solutions have been developed focusing on the strengthening of reinforced concrete beams, which allowed the omission of certain terms. The theoretical predictions are compared with other existing solutions. Finally, numerical results from the present analysis are presented to study the effects of various parameters of the beams on the distributions of the interfacial shear stresses. The results of this study indicated that the E-FGM plate strengthening systems are effective in enhancing flexural behavior of the strengthened RC beams.