• Title/Summary/Keyword: Interfacial Tension

Search Result 187, Processing Time 0.023 seconds

Dependency of the Critical Carbon Content of Electrical Conductivity for Carbon Powder-Filled Polymer Matrix Composites

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.365-369
    • /
    • 2015
  • This paper investigates the dependency of the critical content for electrical conductivity of carbon powder-filled polymer matrix composites with different matrixes as a function of the carbon powder content (volume fraction) to find the break point of the relationships between the carbon powder content and the electrical conductivity. The electrical conductivity jumps by as much as ten orders of magnitude at the break point. The critical carbon powder content corresponding to the break point in electrical conductivity varies according to the matrix species and tends to increase with an increase in the surface tension of the matrix. In order to explain the dependency of the critical carbon content on the matrix species, a simple equation (${V_c}^*=[1+ 3({{\gamma}_c}^{1/2}-{{\gamma}_m}^{1/2})^2/({\Delta}q_cR]^{-1}$) was derived under some assumptions, the most important of which was that when the interfacial excess energy introduced by particles of carbon powder into the matrix reaches a universal value (${\Delta}q_c$), the particles of carbon powder begin to coagulate so as to avoid any further increase in the energy and to form networks that facilitate electrical conduction. The equation well explains the dependency through surface tension, surface tensions between the particles of carbon powder.

Effects of Salt Flux and Alloying Elements on the Coalescence Behaviour of Aluminum Droplets (알루미늄 Droplets 합체거동에 미치는 Salt Flux 및 합금원소 첨가의 영향)

  • Kim, Ye-Sik;Yoon, Eui-Pak;Kim, Ki-Tae;Jung, Woon-Jae;Jo, Duk-Ho
    • Journal of Korea Foundry Society
    • /
    • v.20 no.1
    • /
    • pp.38-45
    • /
    • 2000
  • The remelting for recycling or thin aluminum scrap, such as aluminum chip generally involves melting of these pieces submerged in molten salt flux. In this study, the effects of salt flux compositions and alloying elements on the aluminum dropletscoalescence and oxide film removal were studied in 99.8%Al, Al-1.01%Cu, Al-1.03%Si, and Al-1.38%Mg alloys as a function of holding time at $740^{\circ}C$ Salt fluxes based on NaCl-KCl(1:1) with addition of 5wt.% fluorides(NaF, $Na_3AlF_6$, $CaF_2$) or 5 wt.% chloride($MgCl_2$, $AlCl_3$) were used. The experimental results show that NaCl-KCl(1:1) with addition of 5 wt.% fluorides exhibits better coalescence ability than that with chlorides. The oxide film is not removed by NaCl-KCl(1:1) with addition of 5 wt.%chlorides, while it is removed by NaCl-KCl(1:1) with addition of 5 wt.% fluorides. The aluminum droplets coalescence and oxide film removal by salt fluxes are related to interfacial tension tension between metal and salt flux.

  • PDF

Synthesis of Saccharide Nonionic Biosurfactants from Coconut Oil and Characterization of Their Interfacial Properties (코코넛 오일로부터 유래된 당계 비이온 계면활성제 합성 및 계면 특성 연구)

  • Jo, SeonHui;Lee, YeJin;Park, KiHo;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.435-444
    • /
    • 2019
  • In this study, two types of nonionic saccharide biosurfactants, GP-6 and GP-7, were prepared from coconut oil and the structure of resulting products was investigated by FT-IR, $^1H-NMR$ and $^{13}C-NMR$ spectrophotometer. The interfacial properties of GP-6 and GP-7 were found to be excellent from interfacial property measurements such as critical micelle concentration, static and dynamic surface tensions, interfacial tension, emulsification power, wetting property and foam stability. Detergency test evaluated by using a Terg-o-tometer showed moderately good detergency compared to that of conventional surfactants used in detergent formulations. Biodegradability, acute oral toxicity, acute dermal irritation and acute eye irritation tests revealed that both surfactants possess excellent mildness and superior environmental compatibility indicating the potential applicability to detergent products formulations. In particular, GP-6 can be considered as a strong candidate in detergent formulations since it is more surface active, mild and readily biodegradable than GP-7.

NUMERICAL SIMULATION OF MULTIPHASE FLOW USING LEVEL CONTOUR RECONSTRUCTION METHOD (Level Contour Reconstruction 방법을 이용한 다상유동 수치해석)

  • Shin, Seung-Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.193-200
    • /
    • 2009
  • Recently, there have been efforts to construct hybrids among the existing methodologies for multiphase flow such as VOF, Level Set, and Front Tracking with the intention of facilitating simulations of general three-dimensional problems. As one of the hybrid method, we have developed the Level Contour Reconstruction Method (LCRM) for general three-dimensional multiphase flows including phase change. The main idea was focused on simplicity and a robust algorithm especially for the three-dimensional case. It combines characteristics of both Front Tracking and Level Set methods. While retaining an explicitly tracked interface using interfacial elements, the calculation of a vector distance function plays a crucial role in the periodic reconstruction of the interface elements in the LCRM method to maintain excellent mass conservation and interface fidelity. In addition, compact curvature formulation is incorporated for the calculation of the surface tension force thereby reducing parasitic currents to a negligible level.

  • PDF

DEVELOPMENT OF A NUMERICAL TECHNIQUE FOR IMPACT AND SPREADING OF A DROPLET CONTAINING PARTICLES ON THE SOLID SUBSTRATE (미세입자분산 액적의 고체면에서 충돌과 퍼짐현상에 관한 직접수치해석 기법개발)

  • Jeong, Hyun-Jun;Hwang, Wook-Ryol;Kim, Chong-Youp
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.8-13
    • /
    • 2008
  • We present a numerical simulation technique and some preliminary results of the impact and spreading of a droplet containing particles on the solid substrate in 2D. We used the 2nd-order Adams-Bashforth / Crank-Nicholson method to solve the Navier-Stokes equation and employed the level-set method with the continuous surface stress for description of droplet spreading with interfacial tension. The impact velocity has been generated by the instantaneous gravity. The distributed Lagrangian-multipliers method has been combined for the implicit treatment of rigid particles and the discontinuous Galerkin method has been used for the stabilization of the interface advection equation. We investigated the droplet spreading by the inertial force and discussed effects of the presence of particles on the spreading behavior using an example problem. We observed reduced oscillation and spread for the particulate droplet.

Analysis of Cold Workability at the A16061 Bulk Material by Tension and Compression Tests (Al 6061 Bulk재에서 인장 및 압축 시험에 의한 상온 가공성 비교 분석)

  • 김국주;박종수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.74-79
    • /
    • 2003
  • When workability at the a certain bulk deformation process is defined as the maximum plastic deformation capability that the workpiece can sustain without causing any cracks or fracture, the workability is dependent on the microstructure, initial workpiece shape, stress state developed during the deformation process, strain rata and presence of the interfacial friction between workpiece and tool. For a review purpose, the workability definition and test methods are summarized depending on the applied stress state at bulk deformation process in Table 1 at the text. In this study, the cold workabilities of as-cast A16061 bulk material have been measured and comparatively analyzed at the primary tensile stress state by using tensile specimens, the primary compressive stress state by using cylindrical specimens, and the forming limit diagram by ductile fracture.

  • PDF

A homogenization approach for uncertainty quantification of deflection in reinforced concrete beams considering microstructural variability

  • Kim, Jung J.;Fan, Tai;Reda Taha, Mahmoud M.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.503-516
    • /
    • 2011
  • Uncertainty in concrete properties, including concrete modulus of elasticity and modulus of rupture, are predicted by developing a microstructural homogenization model. The homogenization model is developed by analyzing a concrete representative volume element (RVE) using the finite element (FE) method. The concrete RVE considers concrete as a three phase composite material including: cement paste, aggregate and interfacial transition zone (ITZ). The homogenization model allows for considering two sources of variability in concrete, randomly dispersed aggregates in the concrete matrix and uncertain mechanical properties of composite phases of concrete. Using the proposed homogenization technique, the uncertainty in concrete modulus of elasticity and modulus of rupture (described by numerical cumulative probability density function) are determined. Deflection uncertainty of reinforced concrete (RC) beams, propagated from uncertainties in concrete properties, is quantified using Monte Carlo (MC) simulation. Cracked plane frame analysis is used to account for tension stiffening in concrete. Concrete homogenization enables a unique opportunity to bridge the gap between concrete materials and structural modeling, which is necessary for realistic serviceability prediction.

Dynamics of Electrowetting of a Liquid-Liquid Interface in a Cylindrical Tube (원형관내의 액체-액체 계면에 대한 전기습윤 현상의 동적 거동)

  • Kang, Kwan-Hyoung;Chung, Won-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.557-560
    • /
    • 2006
  • The contact angle of a meniscus and a droplet can be controlled by using electrowetting phenomena. We investigated the dynamic aspect of electrowetting for an oil-electrolyte interface formed inside a closed glass tube. A step input voltage is applied and the subsequent motion of the interface is recorded by a high-speed camera. A kind of capillary instability is observed near the three-phase contact line, which could degrade the reliability of device utilizing electrowetting such as electrowetting liquid lens. The dynamics of interface motion for different input voltages and the fluid viscosities are analyzed and discussed based on the experimental results.

  • PDF

Study on Aging Characteristics and Chemical Composition of Hydrogenated Transformer Oil

  • Qian, Yi-Hua;Huang, Yi-Bin;Fu, Qiang;Zhong, Zhen-Sheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.588-594
    • /
    • 2013
  • Under the condition of Baader aging, the chemical composition variation and the influence of transformer oil aging on electrical properties such as dielectric loss factor and physic-chemical properties such as interfacial tension were studied in the aging precess. Moreover, the correlation between hydrogenated transformer oil electrical and physic-chemical properties and its chemical composition variation were also investigated. The results show that these parameters of physic-chemical and electrical properties of hydrogenated transformer oil relate to each other and have closed correlation with chemical composition.

Numerical modeling for cyclic crack bridging behavior of fiber reinforced cementitious composites

  • Shin, Kyung-Joon;Lee, Kwang-Myong;Chang, Sung-Pil
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.147-164
    • /
    • 2008
  • Recently, many researches have been done to examine the behavior of fiber reinforced concrete (FRC) subjected to the static loading. However, a few studies have been devoted to cyclic behaviors of FRC. A main objective of this paper is to investigate the cyclic behavior of FRC through theoretical method. A new cyclic bridging model was proposed for the analysis of fiber reinforced cementitious composites under cyclic loading. In the model, non-uniform degradation of interfacial bonding under cyclic tension was considered. Fatigue test results for FRC were numerically simulated using proposed models and the proposed model is achieving better agreement than the previous model. Consequently, the model can establish a basis for analyzing cyclic behavior of fiber reinforced composites.