• Title/Summary/Keyword: Interface zone

Search Result 397, Processing Time 0.028 seconds

Optimal Design Method of 1-Port Surge Protective Device Based on Zinc Oxide Varistor (선화아연바리스터 기반의 1-포트 서지보호장치의 최적 설계 기법)

  • Jeong, Tae-Hoon;Kim, Young-Sung;Park, Geun-Bo;Lee, Seung-IL
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.93-102
    • /
    • 2018
  • This paper reports a Surge Protective Device (SPD) that is used to protect an automatic metering interface (AMI) power supplies of communication equipment on a low-voltage distribution system from a lightning current. The surge protective device (SPD) can be classified as one-port SPDs and two-port SPDs with decoupling elements depending on the connection type. The protection of internal systems against the lightning current may require a systematic approach consisting of coordinated SPDs. To deal with this, the definition of a lightning protection zone (LPZ) was studied and interpreted through a theoretical review. Because the lightning current resulting from a lightning surge is considerably high, there is limited protection from one SPD; therefore, coordinated cascaded MOV-based SPDs are installed to solve this problem. Regarding the power grid mentioned in this paper, a class II SPD for the low-voltage distribution system installed on the border of LPZ1 and LPZ2, which establish a protection coordination with the Arrester (LA, SA) that corresponds to the LPZO installed on the MOF stage connected to one system were designed to protect various communication (control) equipment, including the automatic meter reading system inside the branch-type electric supply panel of a building, not the incoming side of one system. In addition, performance-related tests were done by a comparison with the existing method through testing, and the optimal design was achieved for the 1-port SPD that uses a series connection and can bleed load current without any decoupling element.

Investigation of Regraphitization during Cam Shaft Remelting (캠 샤프트 재용융 처리시 재흑연화 현상에 관한 연구)

  • Oh, Young-Kun;Kim, Gwang-Soo;Koh, Jin-Hyun
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.648-652
    • /
    • 1998
  • TIG remelting was performed to harden the surface of automobile earn shaft. Multipass remelting was conducted in longitudinal direction under argon gas atmosphere. The microstructure of as-east earn shaft was gray iron which consisted of flake graphite and pearlitic matrix. The remelted area had microstructue of both fine pearlite and ledeburite structure that consisted of globular austenite and $Fe_3C$. Hardness for as-cast earn shaft had HRc 25~28, however it increased at remelted area to HRc 53~55. Black line was found at heat affected zone next to the fusion line, that is remelt area of previous pass, during multipass remelting. Black line was identified as graphite, which was transformed from $Fe_3C$. in the ledeburite structure. It is observed that all graphites were nucleated at $Fe_3C$. and matrix interface. High density energy laser remelting process was also applied to verify whether black line could be eliminated. However, black line was still existed as observed in TIG remelting process. Regraphitization was simulated on the ledeburitic structure specimen using Gleeble 1500 with conditions of 1100 and 100$0^{\circ}C$ for 0.5, I, 3, 5 and 1Osee. From the fact that graphite was formed even at the simulation condition of 100$0^{\circ}C$ for 0.5sec, it is seen that regraphitization is an inevitable phenomenon generated whatever processes used during multipass overlap remelting.

  • PDF

Microstructure and Creep Fracture Characteristics of Dissimilar SMA Welds between Inconel 740H Ni-Based Superalloy and TP316H Austenitic Stainless Steel (Inconel 740H 니켈기 초내열합금과 TP316H 스테인리스강의 이종금속 SMA 용접부의 미세조직과 크리프 파단 특성)

  • Shin, Kyeong-Yong;Lee, Ji-Won;Han, Jung-Min;Lee, Kyong-Woon;Kong, Byeong-Ook;Hong, Hyun-Uk
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.33-40
    • /
    • 2016
  • The microstructures and the creep rupture properties of dissimilar welds between the Ni-based superalloy Inconel 740H and the non-stabilized austenitic stainless steel TP316H have been characterized. The welds were produced by shielded metal arc (SMA) welding process with the AWS A5.11 Class ENiCrFe-3 filler metal, commonly known as Inconel 182 superalloy. Postweld heat treatment at $760^{\circ}C$ for 4 hours was conducted to form ${\gamma}^{\prime}$ strengthener in Inconel 740H. The austenitic weld metal produced by Inconel 182 had a dendritic microstructure, and grew epitaxially from the both sides of Inconel 740H and TP316H base metals. Since both Inconel 740H and TP316H did not undergo any solid-state transformation during welding process, there were no heat-affected-zone (HAZ) sub-regions and the coarsoned grains near the weld interface were limited to a narrow region. The hardness of Inconel 182 weld metal was ~220 Hv. The gradual hardness decrease was detected at HAZ of TP316H, and the TP316H base metal displayed the lowest hardness value (~180 Hv) whilst the Inconel 740H showed the highest hardness value (~400 Hv). Fracture after creep occurred at the center of weld metal, regardless of creep condition. It was found that during creep the cracks initiated and propagated along interdendritic regions and grain boundaries at which Laves particles enriched in Nb, Si and Cr were present. The appropriate design of weld metal was discussed to suppress the creep-induced cracking of the present dissimilar weld.

Atmospheric Dispersion Assessment for Potential Accidental Releases at Yonggwang Nuclear Power Plants (영광원전에서 가상 사고시 대기확산 평가)

  • Na, Man-Gyun;Sim, Young-Rok;Jung, Chul-Kee;Lee, Goung-Jin;Kim, Soong-Pyung;Chung, Sung-Tai
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.2
    • /
    • pp.81-87
    • /
    • 2000
  • XOQ_DW code is currently used to assess the atmospheric dispersion fur the routine releases of radioactive gaseous effluents at Yonggwang nuclear power plants. This code was developed based on XOQDOQ code and an additional code is required to assess the atmospheric dispersion for potential accidental releases. In order to assess the atmospheric dispersion fer the accidental releases, XOQAR code has been developed by using PAVAN code that is based on Reg. Guide 1.145. The terrain data of XOQ_DW code inputs and the relative concentrations (X/Q) of XOQ_DW code outputs are used as the inputs of the XOQAR code through the interface with XOQ_DW code. By using this code, the maximum values of X/Q at exclusion area and low population zone boundaries except for sea areas were assessed as $1.33{\times}10^{-4}$ and $7.66{\times}10^{-6}$ sec/$m^3$, respectively. Through the development of this code, a rode system is prepared for assessing the atmospheric dispersion for the accidental releases as well as the routine releases. This developed code ran be used for other domestic nuclear power plants by modifying the terrain input data.

  • PDF

Analysis on the Change in the Pan Evaporation Rate in the Coastal Zone (우리나라 연안의 팬증발량 변화 양상 분석)

  • Lee, Khil-Ha;Oh, Nam-Sun;Jeong, Shin-Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.3
    • /
    • pp.244-252
    • /
    • 2007
  • A long-term change in the evaporation rate have an influence on the hydrologic processes at the interface between the land surface-air and crop yield. Several previous studies have reported declines in pan evaporation rate, while actual evaporation rate is expected to increase due to anthropogenic global change in the future. The decreasing trend of pan evaporation rate might be involved with global warming and accordingly the trend of annual pan evaporation rate also needs to be checked here in Korea. In this study, 14 points of pan evaporation observation are intensively studied to investigate the trend of pan evaporation for the time period of 1970-2000. Annual pan evaporation is decreasing at the rate of 1.6mm/yr, which corresponds to approximately 50mm for 30 years. Annual pan evaporation rate is larger by $\sim10%$ at the coastal area and decreasing rate is faster as -2.46 mm/yr per year, while that is -0.82 mm/yr per year at the in-land area. The results of the Mann-Kendall trend test shows 4 points are decreasing and 10 points are unchanged with 95% confidence interval. But national annual average values show the decreasing trend of pan evaporation rate as a whole, which corresponds to general trend all over the world. This study will contribute to a variety of studies on water resources, hydrology, agricultural engineering, meteorology, and coastal engineering in association with future global climate change.

Sintering Mixtures in the Stage of Establishing Chemical Equilibrium

  • Savitskii, A.P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1999.04a
    • /
    • pp.5-5
    • /
    • 1999
  • The Principal deficiency of the existing notion about the sintering-mixtures consists in the fact that almost no attention is focused on the Phenomenon of alloy formation during sintering, its connection with dimensional changes of powder bodies, and no correct ideas on the driving force for the sintering process in the stage of establishing chemical equilibrium in a system are available as well. Another disadvantage of the classical sintering theory is an erroneous conception on the dissolution mechanism of solid in liquid. The two-particle model widely used in the literature to describe the sintering phenomenon in solid state disregards the nature of the neighbouring surrounding particles, the presence of pores between them, and the rise of so called arch effect. In this presentation, new basic scientific principles of the driving forces for the sintering process of a two-component powder body, of a diffusion mechanism of the interaction between solid and liquid phases, of stresses and deformation arising in the diffusion zone have been developed. The major driving force for sintering the mixture from components capable of forming solid solutions and intermetallic compounds is attributed to the alloy formation rather than the reduction of the free surface area until the chemical equilibrium is achieved in a system. The lecture considers a multiparticle model of the mixed powder-body and the nature of its volume changes during solid-state and liquid-phase sintering. It explains the discovered S-and V-type concentration dependencies of the change in the compact volume during solid-state sintering. It is supposed in the literature that the dissolution of solid in liquid is realised due to the removal of atoms from the surface of the solid phase into the melt and then their diffusicn transfer from the solid-liquid interface into the bulk of liquid. It has been shown in our experimental studies that the mechanism of the interaction between two components, one of them being liquid, consist in diffusion of the solvent atoms from the liquid into the solid phase until the concentration of solid solutions or an intermetallic compound in the surface layer enables them to pass into the liquid by means of melting. The lecture discusses peculimities of liquid phase formation in systems with intermediate compounds and the role of the liquid phase in bringing about the exothermic effect. At the frist stage of liquid phase sintering the diffusion of atoms from the melt into the solid causes the powder body to grow. At the second stage the diminution of particles in size as a result of their dissolution in the liquid draws their centres closer to each other and makes the compact to shrink Analytical equations were derived to describe quantitatively the porosity and volume changes of compacts as a result of alloy formation during liquid phase sinteIing. Selection criteria for an additive, its concentration and the temperature regime of sintering to control the density the structure of sintered alloys are given.

  • PDF

Spatial Variability of Hydraulic Properties in a Multi-Layered Soils of Japanese Larch (Larix leptolepis) Stand (낙엽송림분의 다층구조 토광에 있어서 수리특성의 공간 변리)

  • Chung Doug Young;Jin Hyun O
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.1
    • /
    • pp.29-35
    • /
    • 1999
  • Soil structure and organic matter have been known to strongly affect water flow and solute transport, yet little information is available concerning soil hydraulic properties related to soil physical and chemical properties in the forest site. The purpose of this study was to quantify the spatial variability and spatial correlation of the measured parameter values from the plots established with the rainfall simulator on Japanese larch(Larix leptolepis) dominated site in Kwangju. Kyunggi-Do. Measurement of soil water flux and retention were made with the inherent soil texture, soil structure, and organic matter. The method was based on the observation that when water was applied at a constant rate to the soil surface on each plot. The method was simple to apply and consists of following steps: (i) Wet the soil from a rainfall simulator with several known discharge rates on a relatively leveled soil surface with and without organic matter. (ii) Once the borders of the ponded zone were steady, saturated hydraulic conductivity( $K_{s}$) and the matric flux function(F) was evaluated from a regression of flux vs. the reciprocal of the ponded area. A conductivity of the form $K_{i+}$$_1$ $_{c}$= $K_{i}$( $_{c}$) [1-d /dz] where flux continuity implies. For this, continuity of matric potential at the interface at all times are as follows: $_1$( $Z_{c}$) = $_2$( $Z_{c}$) = $_{c}$ for steady state intake from water ponded on the soil surface. Results of this investigation showed the importance of understanding spatial variability in wide differences of water retention and saturated hydraulic conductivity with respect to pore geometry and organic matter contents which influenced the water flux throughout the soil profile.l profile.ile.

  • PDF

Effect of Immersion in Water and Thermal Cycling on the Mechanical Properties of Light-cured Composite Resins (광중합형 수복용 복합레진의 기계적 성질에 미치는 수중침적과 Thermal Cycling의 영향)

  • Bae, Tae-Sung;Kim, Tae-Jo;Kim, Hyo-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.327-336
    • /
    • 1996
  • This study was performed to investigate the effec% of immersion in water and thermal cycling on the mechanical peoperties of light cured restorative composite resins. Five commerically available light-cured composite resins(Photo Clearfil A : CA, Lite-Fil A . LF, Clearril Photo Posterior CP, Prisms AP.H.. PA, 2100 : ZH) were unto The specimens of 12 m in diameter and 0.7 m in thickness were made, and an immersion in $37^{\circ}C$ water for 7 days and a thermal cycling of 1000 cycles at 15 second dwell time each in $5^{\circ}C$ and $55^{\circ}C$ baths were performed. Biaxial flexure test was conducted using the ball-on-three-ball method at the crosshead speed of 0.5mm/min. In order to investigate the deterioration of composite resins during the thermal cycling test, Weibull analysis for the biaxial flexure strengths was done. Fracture surfaces and the surfaces before and after the thermal cycling test were examined by SEM. The highest Weibull modulus value of 10.09 after thermal cycling tests which means the lowest strength variation, was observed in the CP group, and the lowest value of 4.47 was obsered in the LF Group. Biaxial flexure strengths and Knoop hardness numbers significantly decreased due to the thermal cycling ($\textit{p}$< 0.01), however, they recovered when specimens were drie4 The highest biaxial flexure strength of 125.65MPa was observed in the ZH group after the thermal cycling test, and the lowest value of 64.86MPa was observed in the CA group. Biaxial flexure strengths of ZH and CP groups were higher than those of PA, CF, and CA groups after thermal cycling test($\textit{p}$< 0.05). Knoop hardness numbers of CP group after the thermal cycling test was the highest(95.47 $\pm$ 7.35kg/$mm^2$) among the samples, while that of CA group was the lowest(30.73 $\pm$ 2.58kg/$mm^2$). Knoop hardness numbers showed the significant differences between the CP group and others after the thermal cycling test(($\textit{p}$< 0.05). Fracture surfaces showed that the composite resin failure developed along the matrix resin and the filler/resin interface region, and the cracks propagated in the conical shape from the maximum tensile stress zone.

  • PDF

Applications of Micro-Droplet Cell to Study of Localized Corrosion Resistance of Stainless Steels (스테인리스강의 국부부식 저항성 연구에 미세방울셀의 응용)

  • Kim Sung-Yu;Kim Hee-San
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.70-76
    • /
    • 2006
  • Micro-droplet cell with free droplet as a micro-electrochemical technique has been limited to apply to electrochemical systems with high wetting properties such as an acidic solution and low grade stainless steels(Type 316L). By loading negative pressure to a droplet, control of droplet size, and use of hydrophobic gasket, the cell is modified to be allowed to use for electrochemical systems with high wetting properties. For giving the reliability of new cell, studies on local corrosion were conducted for three different systems-an acidic chloride solution and high chromium ferritic stainless steel, the other acidic chloride solution and type 316, and a neutral chloride solution and type 316. stainless steel. Firstly, the modified micro-droplet cell allows the anodic polarization curves in an acidic chloride solution to show the fact that the local corrosion of high chromium stainless steel near the $\alpha/\sigma$ interface is due to the Cr depleted zone. Secondly, the local anodic polarization test of type 316 L in the other acidic chloride solution can be successfully conducted in the cell. Furthermore, the local polarization curves help elucidating the corrosion of type 316 with $\delta-ferrite$ phase. Finally, the polarization curves of type 316 L in a neutral chloride solution indicates that the factor affecting the pitting corrosion resistance was inclusions rather than $\delta-ferrite$.

Hot Corrosion Behavior of Plasma Sprayed 4 mol% Y2O3-ZrO2 Thermal Barrier Coatings with Volcanic Ash (플라즈마 용사법으로 제작된 4mol% Y2O3-ZrO2 열차폐코팅의 화산재에 의한 고온열화거동)

  • Lee, Won-Jun;Jang, Byung-Koog;Lim, Dae-Soon;Oh, Yoon-Suk;Kim, Seong-Won;Kim, Hyung-Tae;Araki, Hiroshi;Murakami, Hideyuki;Kuroda, Seiji
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.353-358
    • /
    • 2013
  • The hot corrosion behavior of plasma sprayed 4 mol% $Y_2O_3-ZrO_2$ (YSZ) thermal barrier coatings (TBCs) with volcanic ash is investigated. Volcanic ash that deposited on the TBCs in gas-turbine engines can attack the surface of TBCs itself as a form of corrosive melt. YSZ coating specimens with a thickness of 430-440 ${\mu}m$ are prepared using a plasma spray method. These specimens are subjected to hot corrosion environment at $1200^{\circ}C$ with five different duration time, from 10 mins to 100 h in the presence of corrosive melt from volcanic ash. The microstructure, composition, and phase analysis are performed using Field emission scanning electron microscopy, including Energy dispersive spectroscopy and X-ray diffraction. After the heat treatment, hematite ($Fe_2O_3-TiO_2$) and monoclinic YSZ phases are found in TBCs. Furthermore the interface area between the molten volcanic ash layers and YSZ coatings becomes porous with increases in the heat treatment time as the YSZ coatings dissolved into molten volcanic ash. The maximum thickness of this a porous reaction zone is 25 ${\mu}m$ after 100 h of heat treatment.