• Title/Summary/Keyword: Interface temperature

Search Result 2,044, Processing Time 0.026 seconds

Sea Surface pCO2 and Its Variability in the Ulleung Basin, East Sea Constrained by a Neural Network Model (신경망 모델로 구성한 동해 울릉분지 표층 이산화탄소 분압과 변동성)

  • PARK, SOYEONA;LEE, TONGSUP;JO, YOUNG-HEON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Currently available surface seawater partial pressure carbon dioxide ($pCO_2$) data sets in the East Sea are not enough to quantify statistically the carbon dioxide flux through the air-sea interface. To complement the scarcity of the $pCO_2$ measurements, we construct a neural network (NN) model based on satellite data to map $pCO_2$ for the areas, which were not observed. The NN model is constructed for the Ulleung Basin, where $pCO_2$ data are best available, to map and estimate the variability of $pCO_2$ based on in situ $pCO_2$ for the years from 2003 to 2012, and the sea surface temperature (SST) and chlorophyll data from the MODIS (Moderate-resolution Imaging Spectroradiometer) sensor of the Aqua satellite along with geographic information. The NN model was trained to achieve higher than 95% of a correlation between in situ and predicted $pCO_2$ values. The RMSE (root mean square error) of the NN model output was $19.2{\mu}atm$ and much less than the variability of in situ $pCO_2$. The variability of $pCO_2$ with respect to SST and chlorophyll shows a strong negative correlation with SST than chlorophyll. As SST decreases the variability of $pCO_2$ increases. When SST is lower than $15^{\circ}C$, $pCO_2$ variability is clearly affected by both SST and chlorophyll. In contrast when SST is higher than $15^{\circ}C$, the variability of $pCO_2$ is less sensitive to changes in SST and chlorophyll. The mean rate of the annual $pCO_2$ increase estimated by the NN model output in the Ulleung Basin is $0.8{\mu}atm\;yr^{-1}$ from 2003 to 2014. As NN model can successfully map $pCO_2$ data for the whole study area with a higher resolution and less RMSE compared to the previous studies, the NN model can be a potentially useful tool for the understanding of the carbon cycle in the East Sea, where accessibility is limited by the international affairs.

Enhancement and Quenching Effects of Photoluminescence in Si Nanocrystals Embedded in Silicon Dioxide by Phosphorus Doping (인의 도핑으로 인한 실리콘산화물 속 실리콘나노입자의 광-발광현상 증진 및 억제)

  • Kim Joonkon;Woo H. J.;Choi H. W.;Kim G. D.;Hong W.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.2
    • /
    • pp.78-83
    • /
    • 2005
  • Nanometric crystalline silicon (no-Si) embedded in dielectric medium has been paid attention as an efficient light emitting center for more than a decade. In nc-Si, excitonic electron-hole pairs are considered to attribute to radiative recombination. However the surface defects surrounding no-Si is one of non-radiative decay paths competing with the radiative band edge transition, ultimately which makes the emission efficiency of no-Si very poor. In order to passivate those defects - dangling bonds in the $Si:SiO_2$ interface, hydrogen is usually utilized. The luminescence yield from no-Si is dramatically enhanced by defect termination. However due to relatively high mobility of hydrogen in a matrix, hydrogen-terminated no-Si may no longer sustain the enhancement effect on subsequent thermal processes. Therefore instead of easily reversible hydrogen, phosphorus was introduced by ion implantation, expecting to have the same enhancement effect and to be more resistive against succeeding thermal treatments. Samples were Prepared by 400 keV Si implantation with doses of $1\times10^{17}\;Si/cm^2$ and by multi-energy Phosphorus implantation to make relatively uniform phosphorus concentration in the region where implanted Si ions are distributed. Crystalline silicon was precipitated by annealing at $1,100^{\circ}C$ for 2 hours in Ar environment and subsequent annealing were performed for an hour in Ar at a few temperature stages up to $1,000^{\circ}C$ to show improved thermal resistance. Experimental data such as enhancement effect of PL yield, decay time, peak shift for the phosphorus implanted nc-Si are shown, and the possible mechanisms are discussed as well.

A rock physics simulator and its application for $CO_2$ sequestration process ($CO_2$ 격리 처리를 위한 암석물리학 모의실헝장치와 그 응용)

  • Li, Ruiping;Dodds, Kevin;Siggins, A.F.;Urosevic, Milovan
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.67-72
    • /
    • 2006
  • Injection of $CO_2$ into underground saline formations, due to their large storage capacity, is probably the most promising approach for the reduction of $CO_2$ emissions into the atmosphere. $CO_2$ storage must be carefully planned and monitored to ensure that the $CO_2$ is safely retained in the formation for periods of at least thousands of years. Seismic methods, particularly for offshore reservoirs, are the primary tool for monitoring the injection process and distribution of $CO_2$ in the reservoir over time provided that reservoir properties are favourable. Seismic methods are equally essential for the characterisation of a potential trap, determining the reservoir properties, and estimating its capacity. Hence, an assessment of the change in seismic response to $CO_2$ storage needs to be carried out at a very early stage. This must be revisited at later stages, to assess potential changes in seismic response arising from changes in fluid properties or mineral composition that may arise from chemical interactions between the host rock and the $CO_2$. Thus, carefully structured modelling of the seismic response changes caused by injection of $CO_2$ into a reservoir over time helps in the design of a long-term monitoring program. For that purpose we have developed a Graphical User Interface (GUI) driven rock physics simulator, designed to model both short and long-term 4D seismic responses to injected $CO_2$. The application incorporates $CO_2$ phase changes, local pressure and temperature changes. chemical reactions and mineral precipitation. By incorporating anisotropic Gassmann equations into the simulator, the seismic response of faults and fractures reactivated by $CO_2$ can also be predicted. We show field examples (potential $CO_2$ sequestration sites offshore and onshore) where we have tested our rock physics simulator. 4D seismic responses are modelled to help design the monitoring program.

Low temperature plasma deposition of microcrystalline silicon thin films for active matrix displays: opportunities and challenges

  • Cabarrocas, Pere Roca I;Abramov, Alexey;Pham, Nans;Djeridane, Yassine;Moustapha, Oumkelthoum;Bonnassieux, Yvan;Girotra, Kunal;Chen, Hong;Park, Seung-Kyu;Park, Kyong-Tae;Huh, Jong-Moo;Choi, Joon-Hoo;Kim, Chi-Woo;Lee, Jin-Seok;Souk, Jun-H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.107-108
    • /
    • 2008
  • The spectacular development of AMLCDs, been made possible by a-Si:H technology, still faces two major drawbacks due to the intrinsic structure of a-Si:H, namely a low mobility and most important a shift of the transfer characteristics of the TFTs when submitted to bias stress. This has lead to strong research in the crystallization of a-Si:H films by laser and furnace annealing to produce polycrystalline silicon TFTs. While these devices show improved mobility and stability, they suffer from uniformity over large areas and increased cost. In the last decade we have focused on microcrystalline silicon (${\mu}c$-Si:H) for bottom gate TFTs, which can hopefully meet all the requirements for mass production of large area AMOLED displays [1,2]. In this presentation we will focus on the transfer of a deposition process based on the use of $SiF_4$-Ar-$H_2$ mixtures from a small area research laboratory reactor into an industrial gen 1 AKT reactor. We will first discuss on the optimization of the process conditions leading to fully crystallized films without any amorphous incubation layer, suitable for bottom gate TFTS, as well as on the use of plasma diagnostics to increase the deposition rate up to 0.5 nm/s [3]. The use of silicon nanocrystals appears as an elegant way to circumvent the opposite requirements of a high deposition rate and a fully crystallized interface [4]. The optimized process conditions are transferred to large area substrates in an industrial environment, on which some process adjustment was required to reproduce the material properties achieved in the laboratory scale reactor. For optimized process conditions, the homogeneity of the optical and electronic properties of the ${\mu}c$-Si:H films deposited on $300{\times}400\;mm$ substrates was checked by a set of complementary techniques. Spectroscopic ellipsometry, Raman spectroscopy, dark conductivity, time resolved microwave conductivity and hydrogen evolution measurements allowed demonstrating an excellent homogeneity in the structure and transport properties of the films. On the basis of these results, optimized process conditions were applied to TFTs, for which both bottom gate and top gate structures were studied aiming to achieve characteristics suitable for driving AMOLED displays. Results on the homogeneity of the TFT characteristics over the large area substrates and stability will be presented, as well as their application as a backplane for an AMOLED display.

  • PDF