• 제목/요약/키워드: Interface friction angle

검색결과 85건 처리시간 0.024초

알루미늄 합금을 이용한 후방압출에 의한 캔 성형시 성형 조건이 표면확장과 접촉 압력에 미치는 영향 (Influences of Process Conditions on the Surface Expansion and Contact Pressure in Backward Can Extrusion of Al Alloys)

  • 민경호;서정민;구훈서;비스라;탁상현;이인철;황병복
    • 소성∙가공
    • /
    • 제16권7호
    • /
    • pp.521-529
    • /
    • 2007
  • This paper is concerned with the analysis on the surface expansion of AA 2024 and AA 1100 aluminum alloys in backward extrusion process. Due to heavy surface expansion appeared usually in the backward can extrusion process, the tribological conditions along the interface between the material and the punch land are very severe. In the present study, the surface expansion is analyzed especially under various process conditions. The main goal of this study is to investigate the influence of degree of reduction in height, geometries of punch nose, friction and hardening characteristics of different aluminum alloys on the material flow and thus on the surface expansion on the working material. Two different materials are selected for investigation as model materials and they are AA 2024 and AA 1100 aluminum alloys. The geometrical parameters employed in analysis include punch corner radius and punch nose angle. The geometry of punch follows basically the recommendation of ICFG and some variations of punch geometry are adopted to obtain quantitative information on the effect of geometrical parameters on material flow. Extensive simulation has been conducted by applying the rigid-plastic finite element method to the backward can extrusion process under different geometrical, material, and interface conditions. The simulation results are summarized in terms of surface expansion at different reduction in height, deformation patterns including pressure distributions along the interface between workpiece and punch, comparison of surface expansion between two model materials, geometrical and interfacial parametric effects on surface expansion, and load-stroke relationships.

전.후방 캔 압출공정의 성형특성 연구 (A Study on the Forming Characteristics of Forward and Backward Extrusions)

  • 심지훈;최호준;옥정한;함병수;황병복
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.86-92
    • /
    • 2005
  • In this paper a forward-backward can extrusion process are analyzed by using rigid-plastic FEM simulation. FEM simulation is conducted to investigate forming characteristics such as deformation modes fur different process parameters. Design parameters such as thickness ratio, punch angle, friction factor and diameter ratio are selected to study the effect of them on the pattern of material flow. The analysis is focused mainly on the influences of the design factors on deformation pattern in terms of forming load, extruded length ratio and volume ratio. It is known for the simulation that the forming load, the length ratio and the volume ratio increase as the thickness ratio (TR), the wall thickness in forward direction to that in backward direction, decreases. The various punch angles have slight influence on the forming load. length ratio and volume ratio. However friction factor have little effect on the forming characteristics such as the forming load, volume ratio and so on. In addition the forming load increases as diameter ratio (DR), the outer diameter of a can in forward direction to that in backward direction, increases. Furthermore the extruded length ratio is lowest with a certain value of DR=0.85 among diameter ratios. Pressure distribution exerted on the die-material interface is illustrated schematically.

고대 석조아치교량의 내하력에 관한 연구 (A Study on Load Carrying Capacity of Ancient Stone Arch Bridge)

  • 정형식;황영철
    • 한국지반공학회지:지반
    • /
    • 제8권4호
    • /
    • pp.31-40
    • /
    • 1992
  • 고대 석조아치교량의 아치부분은 암석블릭이 서로 맞물려 있는 불연속면의 특성을 지니고 있다. 이러한 석조아치교량의 내하력을 평가하기 위해서는 역학적으로 취약한 불연속면을 고려하는 것이 요구되나 기존의 해석방법은 아치를 연속된 하나의 일체부재로 보고 해석하였으므로 불연속면의 특성이 고려되지 않았다. 따라서 본 논문에서는 유한요소해석을 이용하여 불연속면을 고려하고 불연속면의 전단강성과 마찰각이 석조아치교량의 내하력에 미치는 영향을 분석함으로써 석조아치교량을 평가하고자 하 였다. 연구결과 고대 석조아치교량의 내하력은 아치블럭을 형성하고 있는 암석 자체의 압축강도보다는 불연속면의 마찰각과 전단강성에 의하여 좌우되며 화강암 교량일 경우에는 전단강성이 더 큰 영향을 미치는 것을 알 수 있었으며 해석대상인 흥국사 홍교는 현재 3등교수준의 내하력을 갖고 있는 것으로 추정된다.

  • PDF

축압축을 받는 CFRP 적층부재의 에너지흡수특성과 파괴모드에 관한 연구 (A Study on the Energy Absorption Characteristics and Fracture Mode of CFRP Laminate Members under Axial Compression)

  • 김정호;정회범;전형주
    • 한국안전학회지
    • /
    • 제17권3호
    • /
    • pp.7-12
    • /
    • 2002
  • The object of this paper is to investigate collapse characteristics of CF/Epoxy(Carbon Fiber/Epoxy resin) composite tubes on the change of interlaminar number and fiber orientation angle of outer and to evaluate reappearance of collapse characteristics on the change of tension strength of fibers under static and impact axial compression loads. When a CF/Epoxy composite tube is mushed, static/impact energy is consumed by friction between the loading plate and the splayed fiends of the tube, by fracture of the fibers, matrix and their interface. In general, CF/Epoxy tube with 6 interlaminar number(C-type) absorbed more energy than other tubes(A, B, D-types). The maximum collapse load seemed to increase as the interlaminar number of such tubes increases. The collapse mode depended upon orientation angle of outer of CF/Epoxy tubes and loading status(static/impact). Typical collapse modes of CF/Epoxy tubes are wedge collapse mode, splaying collapse mode and fragmentation collapse mode. The wedge collapse mode was shorn in case of CF/Epoxy tubes with 0$^{\circ}$ orientation angle of outer under static and impact loadings. The splaying collapse mode was shown in only case of CF/Epoxy tubes with 90$^{\circ}$ orientation angie or outer under static loadings, however in impact tests those were collapsed in fragmentation mode. So that CF/Epoxy tube with 6 interlaminar number and 90$^{\circ}$ outer orientation angle presented to the optimal collapse characteristics.

Variation of Pull-out Resistance of Geogrid with Degree of Saturation of Soil

  • Yoo, Chungsik;ALI, TABISH
    • 한국지반신소재학회논문집
    • /
    • 제19권1호
    • /
    • pp.1-9
    • /
    • 2020
  • This paper presents the results of experimental investigation on the effect of degree of saturation of soil on the pullout behavior of a geogrid. Different test variables were taken into account while performing the experiment including the soil physical conditions based on water content and external loading applied. The soil used was locally available weathered granite soil. The tests included variations in saturation of about 90%, 80%, 70% and 45% (optimum moisture content). The pullout tests were performed according to ASTM standard D 6706-01. The results indicate that increasing the degree of saturation in the soil decreases the pull-out capacity, which in turn decreases the interface friction angle and interaction coefficient. The decrease in the pullout interface coefficient was observed to be around 12.50% to 33.33% depending on the normal load and degree of saturation of the soil. The test results demonstrated the detrimental effect of increasing the degree of saturation within the reinforce soil on the pullout behavior of reinforcement, thus on the internal stability. The practical inferences of the outcomes are analyzed in detail.

Passive earth pressure for retaining structure considering unsaturation and change of effective unit weight of backfill

  • Zheng, Li;Li, Lin;Li, Jingpei;Sun, De'an
    • Geomechanics and Engineering
    • /
    • 제23권3호
    • /
    • pp.207-215
    • /
    • 2020
  • This paper presents a kinematic limit analysis for passive earth pressure of rigid retaining structures considering the unsaturation of the backfill. Particular emphasis in the current work is focused on the effects of the spatial change in the degree of saturation on the passive earth pressure under different steady-infiltration/evaporation conditions. The incorporation of change of effective unit weight with degree of saturation is the main contribution of this study. The problem is formulated based on the log-spiral failure model rather than the linear wedge failure model, in which both the spatial variations of suction and soil effective unit weight are taken into account. Parametric studies, which cover a wide range of flow conditions, soil types and properties, wall batter, back slope angle as well as the interface friction angle, are performed to investigate the effects of these factors on the passive pressure and the corresponding shape of potential failure surfaces in the backfill. The results reveal that the flow conditions have significant effects on the suction and unit weight of the clayey backfill, and hence greatly impact the passive earth pressure of retaining structures. It is expected that present study could provide an insight into evaluation of the passive earth pressure of retaining structures with unsaturated backfills.

지오텍스타일 백으로 보강된 철도노반의 정적거동 분석 (Static Behavior of Reinforced Railway Roadbed by Geotextile Bag)

  • 이동현;신은철
    • 한국철도학회논문집
    • /
    • 제9권2호
    • /
    • pp.180-186
    • /
    • 2006
  • In this study, a large-scale laboratory model test, 2-D and 3-D numerical analyses were conducted to verify the reinforcement effect by utilizing geotextile bag on the railway roadbed. Static loading which simulated train load was applied on the geotextile bag-reinforced railway roadbed and also unreinforced railway roadbed, Computer program named Pentagon which is a part of FEM programs was used in the numerical analysis. Based on the results of laboratory test, 2-D and 3-D numerical analyses, the effect of load distribution and settlement reduction was found to be depending on the geotextile characteristics, tensile strength of geotextite, and interface friction angle between geotextile bags. In general, the result of 2-D and 3-D numerical analyses shows lower value than that of laboratory test. Also, the result of 3-D numerical analyses shows lower value than that of 2-D numerical analyses because of its stress transfer effect.

FEM simulation of a full-scale loading-to-failure test of a corrugated steel culvert

  • Wadi, Amer;Pettersson, Lars;Karoumi, Raid
    • Steel and Composite Structures
    • /
    • 제27권2호
    • /
    • pp.217-227
    • /
    • 2018
  • This paper utilizes 3D FEM to provide deeper insights about the structural behaviour of a 6.1 m span steel culvert, which was previously tested under extreme loading. The effect of different input parameters pertaining to the backfill soil has been investigated, where the structural response is compared to field measurements. The interface choice between the steel and soil materials was also studied. The results enabled to realize the major influence of the friction angle on the load effects. Moreover, the analyses showed some differences concerning the estimation of failure load, whereas reasons beyond this outcome were arguably presented and discussed.

다양한 시험법에 의해 산정된 토목섬유 사이의 접촉면 전단강도 비교 (Comparisons on the Interface Shear Strength of Geosynthetics Evaluated by Using Various Kinds of Testing Methods)

  • 서민우;오명학;윤현석;박준법
    • 대한토목학회논문집
    • /
    • 제26권2C호
    • /
    • pp.73-80
    • /
    • 2006
  • 4종류 토목섬유 조합으로 구성된 4가지 토목섬유 접촉면의 정적 및 동적 하중 상태에서의 전단거동을 평가하였다. 정적하중 조건에서 경사판 시험과 직접전단 시험을 수행하였으며, 두가지 시험 결과를 상호 비교하였다. 비교 결과 직접전단 시험의 경우, 직접전단 시험이 수행되지 아니한 낮은 응력 단계에서의 접촉면 전단강도를 실제보다 크게 예측할 가능성이 높은 것으로 나타났다. 또한 정적상태에서 수행된 두 종류 시험을 통해 산정된 전단강도를 이용하여 곡선형태의 파괴 포락선식을 구할 수 있었다. 한편 정적 전단강도와 진동대시험을 통해 동적 하중 상태에서 구한 접촉면 전단강도를 비교하여, 하중 특성과 가해진 응력 크기에 따라 각기 다른 마찰 특성을 보임을 확인하였다. 따라서 토목섬유 사이의 접촉면 전단강도를 정확히 평가하기 위해서는 실제 현장에 설치되는 재료를 대상으로 예상되는 응력의 크기와 하중 유형을 고려하여 시험이 수행되어야 할 것이다.

강판으로 보강된 RC보의 에폭시-콘크리트 계면의 부착특성 (Bonding Properties of Epoxy-Concrete Interface in RC Beams Strengthened by Steel Plate)

  • 박윤제;신동혁;이광명;신현목
    • 콘크리트학회논문집
    • /
    • 제13권3호
    • /
    • pp.221-227
    • /
    • 2001
  • 강판으로 철근콘크리트 보를 휨보강하면 보의 강성과 강도는 현저하게 증가하나 부착면에서의 조기파괴로 인하여 충분한 연성을 발휘하지 못하는 경우가 자주 발생한다. 본 연구에서는 에폭시와 콘크리트 계면에서의 부착파괴 메카니즘을 규명하기 위하여 Mohr-Coulomb 규준을 채택하였으며, 에폭시-콘크리트 계면의 부착특성을 결정하기 위하여 사전단 부착실험, 직접전단 부착실험 및 휨보강 부재실험을 수행하였다. 실험과 수치해석을 통하여 에폭시-콘크리트 계면의 내부마찰각이 45$^{\circ}$ 일 때 점착력은 50 kgf/$\textrm{cm}^2$~70 kgf/$\textrm{cm}^2$을 얻었으며, 이를 강판으로 보강된 RC보의 구조계산에 적용하여 파괴하중을 예측함으로써 보강보의 조기파괴를 효과적으로 방지할 수 있을 것으로 판단된다.